
Sandy Easton (BE-OP-PS)

17th April 2020

The “Terrapin” algorithm

Fully optimal scheduling, obeying constraints

Seminar 1 (of 2): Non-parallel scheduling

Chapter 1

Design context for the algorithm

17° April 2020Sandy Easton BE-OP-PS

317° April 2020Sandy Easton BE-OP-PS

Motivation

Key

Transfer line

Experiment line

417° April 2020Sandy Easton BE-OP-PS

The master timing system
• CERN’s master timing system uses quantised time periods of 1.2 seconds

• This is to provide a common “beat” for synchronising accelerators

• Any beam will occupy a whole number of these “basic periods” in each accelerator.

LINAC 4

1.2s

PSB

1.2s

PS

1.2s 1.2s

SPS

Beams are made of “Tetris” style 2-D blocks

517° April 2020Sandy Easton BE-OP-PS

Lower-energy users
• Many experiments do not

need the entire injector chain

Examples:

PSB

PS

PSB

PS

ISOLDE

PSB

AD

nTof

All users can only be furnished between injections to larger accelerators

PS --- not used --

617° April 2020Sandy Easton BE-OP-PS

The Supercycle
• The “Supercycle” is the beam schedule for the whole injector chain

• You may be able to recognise some beams structures in there….!

• But if not… it’s not important for todays purposes.

• It is “cyclic”:

• Once finished, it immediately repeats

• It has a finite length (defined the highest-priority users)

7

Context Summary
The key points for understanding today’s algorithm explanation are

1. The term “supercycle” is just the special name for the schedule we use

2. The supercycle is made of quantised time periods (“Basic periods”)

3. The supercycle has a finite length

4. The supercycle repeats itself once it has completed

17° April 2020Sandy Easton BE-OP-PS

8

Constraints

• There are many constraints on how beams can be follow each other.

• A supercycle which doesn’t respect any constraints is simply not valid.

• Involved departments/users/operators have been polled extensively to collate the

constraints required to satisfy our operations

17° April 2020Sandy Easton BE-OP-PS

9

Constraints

Hardware constraints

• Magnet switching times

• Radiation limits of zones

• Power supply RMS currents

User constraints

• Stray-field avoidance between accelerators

• Always/never following certain beams (hysteresis avoidance)

• Experiment repetition rates (max, min or sometimes both!)

• Required number of instances of each beam (max or min)

Examples

17° April 2020Sandy Easton BE-OP-PS

This list of “real” constraints aren’t exhaustive...

… but the following one of “abstracted constraints is thought to be

10

Constraints
• All reported constraints can be categorised into certain cause/effect types

Cause types

• “Unary”

• Placing an instance of a beam has an effect on how another can be placed

• E.g. Beam X must not be within 3 BPs of Beam Y

• “Cumulative”

• The total number of instances of a beam violates a constraint (or not)

• E.g. RMS magnet currents averaged over the supercycle

• E.g. Required number of instances of beam X

17° April 2020Sandy Easton BE-OP-PS

11

Constraints
• All reported constraints have the following characteristics:

1. Either “Unary” or “Cumulative” in their cause.

Effect types

• Boolean

• The placement of beam X allows (or disallows) the placement of beam Y

• E.g: requesting to only immediately follow certain beams

• Offsetting

• The placement of a beam X delays when beam Y can next start

• E.g. Avoiding hysteresis left by earlier beams.

• E.g. Waiting between subsequent shots to an experiment (Y=X)

• Max-Offsetting

• The placement of beam X restricts when beam Y must start before

• E.g. Constant-flux fixed target experiment: No more than 10s between

shots

17° April 2020Sandy Easton BE-OP-PS

12

Multiple Constraints on beams

17° April 2020Sandy Easton BE-OP-PS

• Operations are not limited to having single constraints from/on individual beams

• Numerous constraints can apply to a single beam

• A single beam to cause constraints on multiple other beams

• This is no problem

13

Multiple Constraints on beams

• Offsetting & max offsetting, all at once

• “Beam Y must be between 3 & 7 BPs after Beam X”

• Boolean/Offsetting/Max-offsetting from multiple beams

• “Beam Z must be at least 4 BPs after Beam X and at least 7 BPs after beam Y”

• “Beam Z can only follow Beam X or Beam Y”

• Boolean constraints combined with offsetting/max-offsetting

• “Beam Z can only come immediately after beam Y & be >4 BPs after Beam X”

• This is fine but causes a few extra complications (not discussed today)

17° April 2020Sandy Easton BE-OP-PS

Examples

14

Inputting constraints into the algorithm
• The algorithm does need to obey constraints

• It doesn’t need to understand the reasons behind them

• Indeed, an algorithm that could would virtually be an AI accelerator operator….

17° April 2020Sandy Easton BE-OP-PS

• A UI could be built to understand magnets, beamlines destinations etc.

• But this is a huge task itself …

• … on top of

• designing this algorithm

• coding this algorithm

• making a rudimentary UI for demonstrations and testing

• The existing UI relies on operators to interpret algorithms from “real” constraints to

their “abstracted” functions.

• Operators already chiefly deal with abstracted constraint functions anyway.

15

Inputting constraints into the algorithm

17° April 2020Sandy Easton BE-OP-PS

Example of a real constraint

• A magnet called BHZ.377 takes about 1.5s to change from steering beams down a

beamline to steering them down the “FTN” beamline (and vice versa)

• Suppose beam X goes down the FTN line, & beam Y goes down the TT10 line.

What does the algorithm need to know?

• If we place X, it is illegal to place Y without having an offset of 1 BP

• If we place Y, it is illegal to place X without having an offset of 1 BP

• Every “real” constraints translates to an “abstract” constraint

• The algorithm uses these abstracted constraints

• How the abstraction is done is a wider question for our whole team

Abstract constraint

16

Final word on constraints

17° April 2020Sandy Easton BE-OP-PS

• Recall: The supercycle is “cyclic”

• A unary constraint cause by a beam at the end of the supercycle...

…. affects beams at the start of the supercycle

• However, the constructive search process is done from “start” to “finish”

• It is not possible to know the “looped back” constraints on beams when starting the

search

• Ensuring “looped back” constraints are not violated requires a special extra step

• It is called the “loopback check”

17

Summary of key points
• The key points for understanding today’s algorithm explanation are

1. The term “supercycle” is just the special name for the schedule we use

2. The supercycle is made of quantised time periods (“Basic periods”)

3. The supercycle has a finite length

4. The supercycle repeats itself once it has completed

• Requires the constraints “loopback” check

5. The algorithm uses the “abstracted” function that underlies any “real” constraint

6. Categories of abstract constraints:

17° April 2020Sandy Easton BE-OP-PS

• Causes:

• Unary

• Cumulative

• Effects:

• Boolean

• Offsetting

• Max offsetting

Chapter 2

Scope of today’s seminar

17° April 2020Sandy Easton BE-OP-PS

19

Scope of today’s seminar

17° April 2020Sandy Easton BE-OP-PS

1. Today, we will explore how the algorithm

• comprehensively explores the schedule space for a single, uncoupled

accelerator

• i.e. “is as strong as a brute-force”

• this is quite a unique feat…

• ensure all constraints are obeyed

• outputs a truly “optimal” schedule

will be the subject of a second seminar

2. Today, we will not explore how the algorithm

• Performs this search for accelerators in parallel

• Deals with “Spares”

• Not as complex as it may appear

• More detail on some constraints

• Works even faster than shown

• The “2.0” is orders of magnitude faster than demonstrated today

• … but 1.0 achieves exactly the same results

20

What is special about Terrapin?

17° April 2020Sandy Easton BE-OP-PS

• Many good scheduling algorithms exist already

• … many can work with convoluted sets of constraints

• … but they are invariably heuristic algorithms

• Genetic, heuristic repair, particle-swarm, etc….

• Machine learning

Why are they “invariably” heuristics?

• Because the set of all schedules (even for small scheduling problems) is HUGE

• It is a permutation space

• WRONG: it is even bigger than a permutation space….!

• Heuristics use educated guesswork to avoid looking at all the schedules

• Keeps runtime practical

• Speed at the expense of thoroughness

• Good heuristics are indeed powerful, useful algorithms, but….

• you can never be sure if their solutions are indeed optimal

• If they cannot find a solution, it doesn’t necessarily mean that no solution exists

2117° April 2020Sandy Easton BE-OP-PS

What is special about Terrapin?
Answer

1. It will find the truly optimal solution

• It does not perform a brute-force…

• …but a stronger solution than it finds does not (and cannot) exist

2. If it finds no solution, then it is certain that no solution exists

• Terrapin keeps a practical runtime, while not suffering the weaknesses of rigour

which heuristics heuristics have

Chapter 3

Foundational ideas

17° April 2020Sandy Easton BE-OP-PS

2317° April 2020Sandy Easton BE-OP-PS

Main idea
• A brute-force becomes so unmanageable because of the exponential growth seen

within the search space

• This tree shows the number of 10-long permutations of two objects

• The possible permutations to be compared are the 210 = 1024 “leaf nodes”

• For schedules, not permutations, there would be even more than 1024 nodes

2417° April 2020Sandy Easton BE-OP-PS

Main idea
• Terrapin would perform the same schedule-search by creating a much neater graph

• The graph would contain 21 nodes, and would contain 1024 paths through it

Analogy

• There is not a route between your work and your home that you wouldn’t

understand…

• … but in your whole life you couldn’t drive (or list) all of them….!

N.B. The word “graph” has two meanings:

2: A network1: A chart

This type

2517° April 2020Sandy Easton BE-OP-PS

Trimming techniques
Topological simplicity

• It was mentioned earlier that a “schedule space” is larger than the space of

permutations of the items it schedules.

• Even with constraints, at any point in building a supercycle there is always an

earliest next place that any requested beam can go

• Nothing can be gained by placing anything later than this earliest place

• This would give a different schedule, yes….

• … but not one you need to look at when looking for an optimal solution!

• Terrapin only considers the “topologically simple” placements.

• It never adds any space that is not absolutely necessary

Completeness without exhaustivity

You can draw a supercycle that Terrapin would never find…

… but it would be equivalent to a “topologically simple” one which Terrapin did find

2617° April 2020Sandy Easton BE-OP-PS

Trimming techniques
Constrained Construction

• Most constrained-scheduling algorithms obey constraints by

• Building a schedule (or sub-schedule)

• Checking if it obeys all the constraints

• Discarding it/trying to repair it if not.

• Terrapin constructs it’s graph one placement at a time

• It doesn’t ever look at ‘potential’ sub-schedules of multiple placements

• No placement decision is ever made which violates constraints from other

placements (/nodes)

The paths within the Terrapin graph all have no violations of any constraints

• A path within the Terrapin graph represent a topologically simple schedule

• This schedule is guaranteed to not violate any constraints.

2717° April 2020Sandy Easton BE-OP-PS

What is Optimal…?

“One person’s rubbish is another person’s treasure”

• A supercycle is “valid” if

• it violates no constraints

• it satisfies all the minimum requests

• A supercycle is “optimal” if

• it is valid

• no preferable supercycle is possible

• Which users should be allocated any available “extra beams” above the minimum

depends on “preference” of current operations

• Terrapin computes the set of allocations possible from all valid supercycles

• The “optimal” is the highest member of this set…

• … according to your own particular priority ordering

2817° April 2020Sandy Easton BE-OP-PS

Key Points

1. The paths within the Terrapin graph contain no violations of any constraints

• The are all completely valid solutions

2. The definition of the “optimal” solution depends on which users you prioritise

Chapter 4

The Terrapin Algorithm: Part 1

17° April 2020Sandy Easton BE-OP-PS

3017° April 2020Sandy Easton BE-OP-PS

Example 1
• Two beams

• Supercycle is 4 basic periods long

• No constraints

Beam A Beam B

1 BP 2 BP

3117° April 2020Sandy Easton BE-OP-PS

Example 1
• Two beams • No constraints• Supercycle length = 4BP

Start

0 1

1 20

<1,0>

<0,1>

Finishes @ index ‘1’

Finishes @ index ‘2’

Phase 1: Building the graph

3217° April 2020Sandy Easton BE-OP-PS

Example 1
• Two beams • No constraints• Supercycle length = 4BP

Start

0 1

1 20

<1,0>

<0,1>
Finishes @ index ‘2’

Phase 1: Building the graph

3317° April 2020Sandy Easton BE-OP-PS

Example 1
• Two beams • No constraints• Supercycle length = 4BP

Phase 1: Building the graph

1 2

2 31

<2,0>

<1,1>

Finishes @ index ‘2’

Finishes @ index ‘3’

3417° April 2020Sandy Easton BE-OP-PS

Example 1
• Two beams • No constraints• Supercycle length = 4BP

Phase 1: Building the graph

1 2

<2,0>
Finishes @ index ‘2’

2 31

<1,1>
Finishes @ index ‘3’

<2,0>

<0,1>

3517° April 2020Sandy Easton BE-OP-PS

Example 1
• Two beams • No constraints• Supercycle length = 4BP

Phase 1: Building the graph

1 2

<2,0>
Finishes @ index ‘2’

2 31

<1,1>
Finishes @ index ‘3’

Next index is index 2…

<2,0>

<0,1>

3617° April 2020Sandy Easton BE-OP-PS

Example 1
• Two beams • No constraints• Supercycle length = 4BP

2 3

3 42

Finishes @ index ‘3’

Finishes @ index ‘4’

Phase 1: Building the graph

Building on the options discovered to give index 2

<2,0>
<0,1>

<3,0>

<1,1>

<2,1>

<0,2>

37

<1,0>

<1,1>

S

@ Index 3

<2,0>
<2,0>

<0,1>

<3,0>

<1,1>

<2,1>
<0,2>

@ Index 3

@ Index 4

Example 1
• Two beams • No constraints• Supercycle length = 4BP

0 1

1 2

2 3

0 1 2

1 2 3

2 3 4

• Next is index 3….

• Notice <1,1> has appears twice for index 3...

17° April 2020Sandy Easton BE-OP-PS

3817° April 2020Sandy Easton BE-OP-PS

Example 1
• Two beams • No constraints• Supercycle length = 4BP

3 4

4 53

Finishes @ index ‘4’

Finishes @ index ‘5’

Phase 1: Building the graph

Building on the options discovered to give index 3

<3,0>
<1,1>

<4,0>

<2,1>

• This goes out of the bounds of the supercycle….

• …so we needn’t consider it

• Indeed, next building index is index 4 – the end of the supercycle

• We have finished building

39

Example 1’s completed graph

08/21/19
Sandy Easton (CERN)

ACMPA workshop, Santa Fe, NM

<1,0>
S

<2,0>
<2,0>

<0,1>

<3,0>

<1,1>

<2,1>

<0,2>

@ End

0 1

1 2

2 3

3 4

0 1 2

1 2 3 2 3 4

<3,0>
<1,1>

<4,0>

<2,1>

<0,2>

<4,0>
<2,1>

40

Example 1: Building a solution

08/21/19
Sandy Easton (CERN)

ACMPA workshop, Santa Fe, NM

<1,0>
S

<2,0>
<2,0>

<0,1>

<3,0>

<1,1>

<2,1>

<0,2>

@ End

0 1

1 2

2 3

3 4

0 1 2

1 2 3 2 3 4

<3,0>
<1,1>

<4,0>

<2,1>

<0,2>

<4,0>
<2,1>

• Let’s say we want a solution who gives

• at least 1 instance to each beam

• Prioritises B over A for extra beams

• We want a schedule with <2,1>

• This is optimal for us

41

Example 1: Building a solution

08/21/19
Sandy Easton (CERN)

ACMPA workshop, Santa Fe, NM

<1,0>
S

<2,0>
<2,0>

<0,1>

<3,0>

<1,1>

<2,1>
<0,2>

@ End

0 1

1 2

2 3

3 4

0 1 2

1 2 3 2 3 4

<3,0>
<1,1>

<4,0>

<2,1>

<0,2>

<4,0>
<2,1>

• We want the <2,1> allocation

• We have 2 options for <1,1>: we can pick either

• Chose A @ 3:

• We have 2 options for <1,1>: we can pick either

• Choose B @ 1:

• Only one seed for <1,0>: -> A @ 0

• We’re now @ 0: Done!

<2,1> should decrement to <1,1>

• <1,1> would decrement to <1,0>

42

Example 1: Building a solution

08/21/19
Sandy Easton (CERN)

ACMPA workshop, Santa Fe, NM

<1,0>
S

<2,0>
<2,0>

<0,1>

<3,0>

<1,1>

<2,1>

<0,2>

@ End

0 1

1 2

2 3

3 4

0 1 2

1 2 3 2 3 4

<3,0>
<1,1>

<4,0>

<2,1>

<0,2>

<4,0>
<2,1>

• Any other supercycle is a path back through the graph like we just did

• The only allocation arrays possible are the ones you see on the right

0 1 2 3 4
Et voila…

4317° April 2020Sandy Easton BE-OP-PS

Example 2

Start

0 1

1 20

<1,0>

<0,1>

Finishes @ index ‘1’

Finishes @ index ‘2’

• However, we haven’t placed anything at the start….

• So the boolean constraint for allowing A is not triggered yet

• Same setup, but let’s say A can only come after B

• We started example 1 like this:

44

Example 2’s completed graph

08/21/19
Sandy Easton (CERN)

ACMPA workshop, Santa Fe, NM

• Similar logic to what we just saw would cause the graph to be built differently

• Many connections would not be made

• And many allocation calculations would not happen

• We see a different set of possible allocations

• But every path is still a valid supercycle

• Here is the graph we made for example 1:

<1,0>
S

<2,0>
<2,0>

<0,1>

<3,0>

<1,1>

<0,2>

@ End

0 1

1 2

2 3

3 4

0 1 2

1 2 3 2 3 4

<3,0>
<1,1>

<1,1>

<0,2>

<4,0>
<2,1>

4517° April 2020Sandy Easton BE-OP-PS

Time complexity
• Terrapin runs in quasi polynomial time

• Not exponential time like a brute fore

• The maximum work done at each step does not increase as theschedule

length increase

• Unlike a brute force

46

Further applications
Non-scheduling problems

• Can be readily applied to other scheduling problems, of course…

• …but it is foreseen that the process can be abstracted to work on many other

sequential processes where the current state does not depend on the order of

previous states

• Many card games

• Scanning the parameter space within sequential finite-element models

• Chess….!?! Hmmm, still no….

• Exciting!

• Expecting a second collaborative publication formalising types of further

applications

As part of a hybrid optimiser

• For huge problems, Terrapin can be thought of as a sub-optimiser

• Potential for creating a very powerful hybrid

Training-example generator for learning algorithms

• Terrapin’s output is an orderable list of objective function values

• Each objective function value has a large list of concrete solutions behind it

17° April 2020Sandy Easton BE-OP-PS

47

Questions

17° April 2020Sandy Easton BE-OP-PS

And see you for part 2!

