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General flow of CUDA computing 

Allocate cuda memory 

Transfer memory 
from cpu to cuda

Transfer memory 
from cuda to cpu

Free cuda memory 

Launch cuda kernel

cudaMalloc(void** devPtr, int size)

cudaMemcpy(devPtr, hostPtr, int size, cudaMemcpyHostToDevice)

doSomething<<< grid size, block size  >>>(devPtr1, devPtr2)

cudaMemcpy(hostPtr, devPtr, int size, cudaMemcpyDeviceToHost)

cudaFree(devPtr)
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CUDA kernel

∙  A kernel is launched with given size 
of grid and block

doSomething<<< grid size, block size  >>>(devPtr1, devPtr2)

∙  threads in different blocks can not 
communicate each other, in principle.
→ Independent tasks are split into each block

∙  User can refer the thread ID and block ID 
inside kernel
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Data structure for fast memory access

∙  When accessed data is aligned about threads, the number of data 
transaction required is reduced (it gets faster)

∙  Each thread of CUDA can access only 1, 2, 4, 8, 16 Bytes at once

x1 y1 z1 x2 y2 z2 x3 z3 y3 ⋯

Ex1 ) 3D vector (x,y,z) handling (misaligned memory access)

3dVectorHandle(Vector3D* vecArray){
Vector3D v = vecArray[threadIdx.x];
// this is similar to…
// float x = vecArray[threadIdx.x][0];
// float y = vecArray[threadIdx.x][1];
// float z = vecArray[threadIdx.x][2];

}

th1 th2 th3 th4 th5 th6 th7 th8 th9 ⋯

threads

vecArray

Memory is NOT aligned against 
thread access
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Data structure for fast memory access (cont.)

∙  When accessed data is aligned about threads, number of data 
transaction is reduced (it gets faster)

∙  Each thread of CUDA can access only 1, 2, 4, 8, 16 Bytes at once

Ex2 ) Aligned memory access

3dVectorHandle(float* xArr, float* yArr, float* zArr){
float x = xArr[threadIdx.x];
float y = yArr[threadIdx.x];
float z = zArr[threadIdx.x];

}

x1 x2 x3 x4 x5 x6 x7 x8 x9 ⋯

th1 th2 th3 th4 th5 th6 th7 th8 th9 ⋯

threads

xArr

Memory is Aligned against 
thread access
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Data structure for fast memory access (cont.)

∙  All spacepoints data were flattened into the matrix (column-major)
which respects the aligned data structure

x1 y1 z1 r1 varR1 varZ1

x2 y2 z2 r2 varR2 varZ2

x3 y3 z3 r3 varR3 varZ3

x4 y4 z4 r4 varR4 varZ4

x5 y5 z5 r5 varR5 varZ5

x6 y6 z6 r6 varR6 varZ6

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

th1

th2

th3

th4

th5

th6

⋯
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Doublet search: [mid]-top

Transform coordinate 
(bot-[mid] doublet) 

Doublet search: bot-[mid]

Transform coordinate 
([mid]-top doublet) 

1Sp_fixed Filter

Triplet Search
[bot]-[mid]-top

2Sp_fixed Filter

Iterate over bottom

Iterate over middle

CPU algorithms for a group of space points
[*]: fixed 
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CUDA algorithms for a group of space points

Transform coordinate 
(bot-mid doublet) 

Doublet search: bot-mid

Transform coordinate 
(mid-top doublet) 

Iterate over middle

Doublet search: mid-top

Triplet Search
(bot-[mid]-top)

2Sp_fixed Filter

1Sp_fixed Filter

CUDA (for 𝑖-th mid)

Iterate over bottom

CPU (for (𝑖 − 1)-th mid)
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Timeline for CUDA

① Doublet Search

② Transform coordinate

③ Triplet Search + SeedFilter (CPU)

① ② ③
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Doublet Search (for middle-bottom)

𝑀1 𝑀2 𝑀3 𝑀𝑁𝑚

Grid

𝐵1 𝐵2 𝐵3 𝐵𝑁𝑏

Block

∙ Since the maximum number of threads per block is 1024, 
the same kernel is iterated over different sets of bottom hits if 𝑁𝑏 > 1024

∙ Input    : spacepoint data of middle and botton hits

∙ Output: index of compatible hits that form doublets
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∙ The structure is similar to the doublet search

𝑀1 𝑀2 𝑀3 𝑀𝑁𝑚
′

Grid

𝐵1
2 𝐵2

2 𝐵3
2 𝐵𝑁𝑏

2

Block

Transform coordinate (for middle-bottom)

Input   : spacepoint data middle and bottom hits
index of compatible hits, 

Output:  (Reduced) spacepoint data transformed into circle 

∙ The matrix size of the output is reduced from the original data to the 
number of doublets



12

Triplet search (for a middle hit)

Input  for the triplet search of 𝑖-th middle hit:

𝑁𝑏
𝑖 hit & circle matrix and 𝑁𝑡

𝑖 hit & circle matrix

𝐵1 𝐵2 𝐵3 𝐵
𝑁𝑏
𝑖

Grid

𝑇1 𝑇2 𝑇3 𝑇𝑁𝑡𝑖

Block

output  for the triplet search of 𝑖-th middle hit:
1) Number of top hits which form triplets for every bottom hit 
2) curvature and impact parameters of triplets
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∙ Triplet search for 𝑖-th mid and seed filtering for 𝑖 − 1 -th mid are done 
asynchronously

∙ Seed filtering done by Cpu is the biggest bottleneck

Timeline of triplet search

Seed FilterCPU

CUDA

Seed Filter Seed Filter Seed Filter Seed Filter Seed Filter
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results comparison (CUDA vs. CPU)

# space points # of seeds (CUDA) # of seeds (CPU) Seed matching ratio

10k 2690 2690 100%

20k 5512 5512 100%

50k 12805 12805 100%

100k 25572 25572 99.99%

200k 49302 49302 99.97%

∙  Seed matching ratio is almost 100% 
∙  the mismatches happen due to the different rounding policy between 
CPU and GPU

∙  CPU model: i7-5820K CPU @ 3.3 GHz
∙  GPU model: GTx 1070
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Wall-time speedup (Release mode (-O2))

∙  Speedup was measured by comparing the wall time:
(preprocessing + CPU seed finding) / (preprocessing + CUDA seed finding)

∙  Preprocessing includes data reading and grouping
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Speedup for each algorithm (Release mode (-
O2))
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Summary

∙  Parallelization on the seed finding was done successfully

∙  Validation tests showed that the seed matching ratio is ~100 %

∙  Achieved one order of magnitude improvement in speedups for >50k space 
points


