
Framework & Tracking @ IJCLab
Hadrien Grasland

IJCLab – Orsay

2

Advanced Tracking Tools

3

Belle 2 profiling

● Belle 2 tracking uses genfit with a Geant4 geometry
– Slow + little maintenance Desire to move to Acts→

– Few people available Desire for a → piecewise integration

– But what would be a promising candidate?

● I profiled the Belle 2 reco to answer this question
– 40% of reco time spent in genfit + children

– Large chain of non-inlined hot function calls…

– ...leading to G4Navigator calls (33% of genfit time)

● Next: Improve hot path inlining + try Acts geometry.

4

Acts micro-benchmarks

● Acts benchmark infrastructure underwent major rework
– Multiple timed runs Output timings now have error bars→
– Robust stats Filter out OS scheduler timing noise→
– Warmup time Study steady state, not transients+steady→
– Optimization barriers No “unfair” code simplification→
– Lambda-friendly API Very easy to write new benchmarks→

● Usage example:

● Output: 20000 runs of 500 iteration(s), 591.7ms total,
 29.5020+/-0.0363µs per run, 59.004+/-1.624ns per iteration

5

Boundary checks

● Track-surface intersection is a very common operation
– Search for candidates in following, material integration

– Navigate through detector volumes…

● Different kinds of 2D boundary checks may be used
– No boundary check at all, infinite surface (1 CPU cycle)

– Inside/outside boundaries (6~10ns on a plane)

– χ²-based tolerance (10~90ns on a plane)

● I have been optimizing this part of Acts by
– Eliminating unnecessary work in “simpler” checks

– Speeding up χ²-based checks (ongoing)

6

Build performance

● Acts build resource consumption is concerning
– Some compilation units take several minutes to build

– 3-4GB/process is common, once saw a 10 GB process

– Often need to tune down concurrency to avoid OOM

● I started investigating this issue
– Can recommend Clang 9’s -ftime-trace for such work

– Most central issue seems to be Eigen expression templates
● Possible workaround: wrapper that forces eager evaluation
● Another argument in favor of moving away from Eigen in the future…

– Boost libs (program options, MPL…) may be an issue too

7

Smaller things

● Helping new students working on Acts
– Xiaocong Ai in her work on a Kalman filter GPU port

– Georgiana Mania in her work on internal TBB parallelism

● Maintaining Acts spack package
– New release cadence: 26 releases since last AIDA meeting!

– …but most don’t touch the build system, thankfully

● Working on the next big Acts-related projects

8

Future prospects

● Continue optimizing surface intersections
– Finish optimizing boundary checks

– Review usage of boundary checks in Acts

– Optimize surface intersection proper (not dominant yet)

● Optimize Runge-Kutta covariance transport

● Resolve Acts build resource consumption issues

9

Framework Extensions

10

Context

● IJCLab’s FW contribution is now focused on MarlinMT*
– More AIDA-2020 WP3 synergies than with Gaudi

– Also a more productive work environment

● Area of interest: Parallel histogramming
– Two classic approaches: mutex and per-thread copies

– Must work around ROOT 6’s thread-hostile design

– Can we do better? Yes… with help from ROOT 7

* See also Rémi’s presentation.

11

ROOT::Experimental::RHist

● Complete redesign/rewrite of THx histograms
– Templated over bin type, dimension, recorded stats

– Sane API scope, no crazy global variables

– Native support for buffered multi-threaded fills

● Problem: In a very preliminary state right now
– It’s not that its API may change, it will need to

– Fill is solid, Add is okay, queries need major work

– Not something you want to expose to physicists

● Solution: Use RHist internally, convert to THx in output

12

RHist converter

● A tool that…
– Ingests any RHist that has a THx equivalent

– Produces the equivalent ROOT 6 histogram

– Output almost* indistinguishable from filling via ROOT 6

● Current status
– 98% feature-complete** and used by MarlinMT

– Open-source, but not advertised yet because…
● …relies on RHist internals should live in ROOT→

* Modulo some edge cases around overflow bin contributions to statistics.
** Does not yet support some obscure TH3 axis configurations + no compilation failure tests yet.

13

ROOT developments

● RHist converter development & testing revealed…
– Many bugs and API shortcomings in RHist

– Some of which call for major refactorings

● …so I started working with the RHist team
– Resolved MarlinMT integration issues as they came up

– Fixed many bugs, extended the test suite

– Redesigned RAxis for type-erased access ergonomics

– Now contributing to regular/overflow bin separation

– Next, will contribute to API redesign to kill pImpl

– …and after that the RHist THx converter should go in→

14

So, why RHist?

● Frequently asked question: What about Boost.Histogram?
– Clearly playing in the same field as RHist

– Both libraries need serious work before becoming usable
● RHist: Going in the right direction, but very immature.
● Boost.Histogram: No ROOT integration, no threading support.

– Significant work already done on RHist

– Politically, ROOT seems like a safer horse to bet on

– In the worst case, can change MarlinMT hist backend

15

Future prospects

● Finish solving various RHist problems

● Integrate RHist converter into ROOT

16

Questions? Comments?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

