The MLP Architecture
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The perceptron, simpler notation
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For the perceptron we only have
"two” activation functions

Linear function Logistic function
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Linear: ©o(T) = T Logistic: ©o (1)



Training a perceptron

We need a training dataset: {Xn, dn}nzl,...,N

el

“pattern” or “target” or
“data point” “label” or
“gold standard”

Each data point typically consists of many values

Xn = (ajnla Ln2y eeey wnP)

Targets can be single- or multiple valued depending on the application.



Example of simple data sets

Tro A T2 A

Xy, = (Tn1, Tp2) (inputs) Tn = Tn1 (inputs)
d, = {0,1} (targets) dy = xp2 (targets)

-

Class = Class o

L Regression problem
Classification problem



Choice of activation function

Regression problem Classification problem

Logistic function
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Linear: ©o(T) = T Logistic: ©o (1)

Why these choices?



We have

Y(X,w) = @, (X, w) {Xna dn}
/ X
Perceptron Training data

Denote: Y, — y(xn, w)

Task!

Yn — dn ,Vn

How?



A very common approach is to
construct an error (loss) function

| X
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An example of an

: : error/loss function!
Consider as a function

of the weights!

Minimizing E means “solving” the task
(or at least an attempt to solve it)

How?



Error

Most common approaches are “gradient descent” methods
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lllustration!

Error &

B

Werig hts

x2 & Tz4 724

See https://playground.tensorflow.org/ for more illustrations!


https://playground.tensorflow.org/

How do we use the perceptron?

New data point

class 1 if y(Xpew) > cut value }

prediction of X, ew { class 0 if y(Xnew) < cut value



How do we use the perceptron?

Prediction

New data point



Why do we not always use the perceptron?

Fundamental limitation!

Linear boundary and linear regression!

T2 A

Can we understand why we
have a linear boundary?



The XOR-problem cannot be solved by the perceptron!




We need the Multi-layer perceptron (MLP)

Two hidden layers

Output

Three hidden layers (towards deep MLP)



It is also important that we have non-linear
activation functions in the hidden layer




The XOR-problem can be solved by this MLP!

X4

(Activation functions =
threshold function)
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The details of a one hidden layer MLP




“Old and
shallow”

Common activation functions for the hidden layers

Tanh() function

Rectifier function

“New and
deep”

S 6_

Tanh:

Also possible

Rectifier
T

@ o - o -~ N ®

ReLU: max (0, x)

| Absalulle value Quacliratic

hi(x)

Leaky RelLU

Maxout units



The MLP is mostly used for two kinds of tasks:

Classification: The algorithm is asked to predict one of
k classes for which the input belongs to

Regression: Predict numerical outputs given an input



For classification problems we typically
make a distinction between binary
and multiple classification problems

Binary

A single output node:

Class 0: target value =0
Class 1: target value = 1

M classes

> @

-
o o |
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M output nodes:
One-hot-encoding

Class 1:[100 ... O]
Class 2:[010 ... Q]

Class M: [OO 0...1]



Binary
classification

Logistic

Output activation functions for the MLP

Regression

nnnnnnnnnnnnnn

Linear

M classes

Softmax

eaf’ni

yni — Zi/ en i’

a,; = net input to output node 7
for pattern n




What about error/loss functions?

For binary classification we commonly use binary cross-entropy error/loss:

E(w) = —% Z(dn log yn + (1 — dy) log(1 — yn))

n=1

For M-class classification we commonly
use categorical cross-entropy error/loss:

— _% sznz logyni
n=11=1

And for regression we Flw) — 1 PRI
have mean squared error/loss: (@) IN ; ; (dni = Yni)



How do we decide the error function?

A very common approach is to use the Maximum Likelihood principle

X = {X17 X9y uny XN} Training data drawn from Pdata (%)

Pmodel (X; 6) Family of distributions modeled by 6

0 = argmax Pmodel(X;0)

Maximum Likelihood 0

N

— aI‘gIQIlaX Hpmodel(xn; (9)
n



N

Products are numerically tricky, _

better to take the log ... 0 = arg ;nax Z log Pmodel (Xn; 0)
T

We can define the loss function to be

N
E(0) = — ) 108 pmode1 (Xn; 6)

Conditional log likelihood

N
E(0) = =) 10g Pnodel(dn|%n; )



Some simple examples

MLP:
1-4-1
(tanh - linear)
1D regression




2D binary classification

MLP: MLP:
2—-4-1 2—-7-1
(tanh - logistic) (tanh - logistic)

How can | draw the red line that is
the boundary between the classes?



We can also do this!!

What do we call this situation?



The approximation theorem

Let ¢(-) be a sigmoidal function and let f(x) € C(I,,) where C(I,,) is the
set of all continuous functions defined over the m-dimensional hypercube I,, =
[0,1]™. For any £ > 0 there exists an integer Nj and a set of real constants:
wj, Wik, b; (j=1,--+,Np, k=1,---,m) such that

|F(x1, 29, ,@m) — f(x1,20,- - ,xp)| <€ VreEl,

where

Nh m
F(xy,20, -+ ,xp) = ijgp (Zd’)jkxk +bj> .
J k=1

Note 1: No information about the number of nodes needed
Note 2: It also applies for classification problems
Note 3: An updated version exists for ReLU activation functions



More on training the MLP. Some details of
minimizing error/loss functions.

The gradient descent has the following basic update formula:

As an example for a one hidden layer MLP

o, .. ﬁ;&
input-to-hidden weights AWjr, = —1N—==
(%ij
oF
hidden-to-output weights Aw;; =

_nﬁwij




Awij

~

ijk

As an example for MSE error/loss function
| N
2
Bw) = 5= > ([dni — yilxa))”.
n=1 =1

and with output from the MLP given as
Yi(Xn) = @0 <Z WijPh (Z @ykxnk» = o(D_ wijhny)
j k J

we can easily compute the weight updates
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As an example for MSE error/loss function

E(w) = % Z Z (dm — yi(xn))Z 3

n=1 1
and with output from the MLP given as
Yi(Xn) = @0 <Z WijPh (Z @ykxnk» = o(D_ wijhny)
j k J

we can easily compute the weight updates

OF 1
Awij = —Nag— =1+ Z (dni — yi(xn)) ¥, (Z Wz'j’hnj’) fin
Ow;; N - =
E:S:zi
. OF 1 .
ijk - —Uaa}jk = UN ; ; Oni Wij Splh (; ij’xnk’>fcnk



How do we compute gradients for a
general feed-forward architecture?



Training an ML model, especially neural network models,
involves minimizing the loss function with respect to model parameters

fUSTARTING POINT

\ LOCAL ' _

MINTAA

Now very often

We can write

Very often one have to rely on numerical
minimization procedures. The most common
approach is gradient descent based methods

_ 0E(w)
B = T e
E(w) = % S Eo(w)



Gradient descent improvements 1.
Stochastic gradient descent

Gradient descent (GD) Aw; = —77_ Z c?w
)

Stochastic gradient Aw: = —
descent (SGD) ' 77P Z &uz

. P << N The collection P samples to use
N 4 if called a mini-batch



Gradient descent improvements 2:
Momentum

The momentum term adds a part of
the previous update to the current

(Why is it called momentum?)



Gradient descent improvements 3:
Individual learning rates - RPROP

Individual learning rates can handle the problem of
different gradient sizes in different directions

OF
Aw;j = —Uij%
i

RPROP = Resilient PROPagation

[ty e s
frl@] 7_77@] (t B 1) if OFE(t) . OE(t—1) <0

8w¢j Swij

with 0<y <1l<~t

But not used so much....



Gradient descent improvements 4.
RMSPROP

RMSPROP (Root Mean Square Propagation) only
uses one common learning rate, but it keeps a running
average of the squared gradient for each weight that
IS used to normalize the magnitude of the gradient,
thereby effectively introducing individual weights.

OE(t) ) ’

Running average vi(t) = yvi(t — 1) + (1 — ) (

a(,dz'
OFE(t
Update the weight  w;(t + 1) = w;(t) — ’Z(t) &52)

_

To be computed using SGD



Gradient descent improvements 5:
ADAM (ADAptive Moment estimation)

In addition to keeping a running average of the
square of the past gradients, as RMSPROP
does, Adam also keeps a running average of
the past gradients. We define,

. i(t+1

ma(t+1) = Bima(®) + (1 — ) 220 =
oz oad
vi(t+1)=52%(t)+(1—52)(agw(,t)) YA

A

m.
1

(B1 = 0.9,8, = 0.999 and € = 107%)

Adam is very popular!!



Many different methods

D
D



Are we now ready to start training?

OK!

* Dataset

Choice of architecture
Choice of activation functions
Choice of error/loss function
How to minimize

What about?
* Pre-processing of input data
* Measuring the performance



Pre-processing of input data

We need to compensate for different input sizes
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More pre-processing of input data

* Missing data imputation
* Encoding

* Dimensionality reduction
* Feature selection

« More pre-processing



Feature:

Numerical value
Binary category

Many categories

Text

Encoding

Input:

Numerical value

Often 0/1 encoding

Often one-hot-encoding

“Many possibilities”, e.g. word2vec



How to measure performance — regression problems

RMSE

Normalized MSE

Scatterplot
True vs. predicted

| N
E = N ;Hdn — y(Xp, w*)
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Compute correlation!



How to measure performance — binary classification problems

Confusion matrix

Predicted

Pos

Neg

Pos

TP

Actual

Neg

FP

TP = True Positives
TN = True Negatives
FP = False Positives
FN = False Negatives



Actual

Pos Neg
8 S FP
S N
@]
r g \
L2

TP + TN
Accuracy =
TP+FP+FN+TN

Why can accuracy be misleading?



Actual

Pos Neg TP
Precision =

TP + FP
O
=
=
O
L
o
L i TN
Sensitivity (Recall) = Specificity =
FP+ TN

TP + FN



True label

Confusion matrix, also for many classes

Confusion Matrix: Test data

112 o 0 0 2 2 0 4 3
600
o] o fam = 8 0 0 0o 7 1
31 0 9 4 0 1 2 M 2 200
1 16 6 0 1 5 13 0
41 400
5| 4 3 3 0 28 1 1 5 2
- 300
s © 0 0 0 0 | 264 0 1 0
;1 0 0 5 1 10 0 0 - 200
sl 7 4 17 7 2 2 19
- 100
o] 1 1 0 0o W 0 2 a4
T T T T 1 1 1 1 1 |]
~ v > o @ A % 9

accuracy=0.9168, misclass=0.0832

Predicted label



For binary classification problems it is common to use the
Receiver Operating Characteristics (ROC) curve and the
area under it (AUC)

To make a decision for a class, we need a cut value (C)

class 1 (pos) if y(x)>C
class 0 (neg) if y(x)<C

For each C we get a Sensitivity / Specificity pair
Vary C between [0,1] and plot all Sens vs (1-Spec)

This is the ROC curve!



Sensitivity

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

An example

ROC curve

Area (Wilcoxon) = 0.8356

0 | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5 0.55 0.6 065 0.7 0.75 0

1 - Specificity

What does the area mean?

!
8 0.

85 0.9 0.

!
95 1



We can plot more things!

I | .

__Total Performance
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We now ready to start training!

OK!

* Dataset

* Choice of architecture

* Choice of activation functions
* Choice of error/loss function
 How to minimize

* Pre-processing of input data
* Measuring the performance



Some examples!

MLP: 1 hidden node

o

| | | | |
~ * E 3
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*
T % * * * ¥ * -
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. * ¥ ]
| * ¥ % _|
| | | |
MLP: 2 hidden nodes
| | | | |
N x +*
_*_
_*_
i Nk * * x * _
* x*
| * * |
u * % x i
| | | |
HALMSTAD
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MLP: 4 hidden nodes

“ HALMSTAD
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MLP: 12 hidden nodes

MLP: 25 hidden nodes

“ HALMSTAD
UNIVERSITY
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The 2D spiral classification problem
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10

MLP:2-10-1

spir-10-GD: No misses = 69

-
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MLP:2-40-1

spir-40-GD: No misses = 3
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MLP:2-150-1

spir-150-GD: No misses = 0
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MLP:2-5-5-5-1
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Pre-processing helps

Transformed spiral data
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20 -3 -7 -1 0 1 2 3
arg(x_l.x_2) = atan2({x_2.x_1)

This can be solved by an
MLP:2-6-1
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MLP:2-50-30-2-6-1

Third hidden layer values

50-30-2-6
100 1
3_
0.75 1
2 .
0.50
17 0.25
N0 0.00 1
-1 -0.25 1
L ~0.50 1 .
—0.75 - %
_3 E
~1.00 1 QL
L] 1 1 1 1 1 1 1 L] L] L] L] L] L] L] L] 1 1
4 -3 -2 -1 0 1 2 3 4 ~1.00 —0.75 —0.50 —0.25 0.00 0.25 050 075 100

“ HALMSTAD
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MLP:2-50-100-2-6-1

50-100-2-6

0.G

0.4 1

Third hidden layer values

~1.00 —0.75 -0.50 —0.25 0.00 025 050 075 100

-

HALMSTAD
UNIVERSITY



MLP:2-40-35-2-1-1

Third hidden layer values

40-35-2-1

100

075 1

050 1

025 1

000 4

—0.25 A1

—0.50 1

—0.75 1

=1.00 1

4 -3 -2 -1 0 1 2 31 4 ~1.00 —0.75 —0.50 -0.25 0.00 025 050 075 100

“ HALMSTAD
UNIVERSITY




More on regularization

L2 and L1 regularization

E(w,a) = E(w) + af2

/ L2 norm (weight deca\\ N
(weig y) L1 norm (lasso) N

O = = 2 ’/ _ l d )
N 2 O

- Modified L2 norm —

N 1 (wi/wo)” A
0= Wi/ Yo
A zz: L4 (wi/ wo/)j S




Early stop

Another alternative to regularization as a way of
controlling the complexity of a network is the
procedure of early stopping.

Error A
Validation error

Training error

-
Number of iterations

Stop here

If we estimate the generalization error using a
separate validation set we can stop the training
when the validation error starts to increase.



Dropout regularization




Other regularization techniques
and ways of avoiding overfitting:

* Ensemble techniques

* Data augmentation



Some final words on deep MLPs



Deep MLPs
rather than this?

Why this
@ @ @ @

""""" ‘m



Test accuracy (percent)

Deep MLPs

96.5
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5

92.0

Empirically, deeper seems to give better generalization

(Image classification experiments)

T T T T T o7 T T T T T
o e—e 3 convolutional
g +—+ 3, fully connected
i = "
g 9 ¥—¥ 11. convolutional [
2o 4
-?:
fi': 92 —

L L L L 1 I'_"‘l | i 1 I |

ird s
6 8 4 - 11 0.0 0.2 0.4 0.6 0.8 1.0
Hidden Iayers Number of parameters % 10%

(From the deep learning book:
https://www.deeplearningbook.org/contents/mip.html)



Deep learning = Representation learning

Rectangle or circle?

Which representation to use?

HALMSTAD
UNIVERSITY




Deep learning = Representation learning

Small or large area?

Which representation to use?

HALMSTAD
UNIVERSITY




hidden layer 1 hidden layer 2 hidden layer 3

input layver

Feature learning

HALMSTAD
UNIVERSITY




Feature learning for “CNNs”

# HALMSTAD
UNIVERSITY




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

