The MLP Architecture

The simple perceptron

The perceptron, simpler notation

$$
y(\mathbf{x}, \boldsymbol{\omega})=\varphi_{o}\left(\sum_{k=1}^{P} \omega_{k} x_{k}+\omega_{0}\right)=\varphi_{o}\left(\sum_{k=0}^{P} \omega_{k} x_{k}\right)=\varphi_{o}\left(\boldsymbol{\omega}^{T} \mathbf{x}\right)
$$

For the perceptron we only have "two" activation functions

Training a perceptron

We need a training dataset: $\quad\left\{\mathbf{x}_{n}, \mathbf{d}_{n}\right\}_{n=1, \ldots, N}$

$$
\begin{array}{ll}
\text { "pattern" or } & \text { "target" or } \\
\text { "data point" } & \text { "label" or } \\
& \text { "gold standard" }
\end{array}
$$

Each data point typically consists of many values

$$
\mathbf{x}_{n}=\left(x_{n 1}, x_{n 2}, \ldots, x_{n P}\right)
$$

Targets can be single- or multiple valued depending on the application.

Example of simple data sets

$\mathbf{x}_{n}=\left(x_{n 1}, x_{n 2}\right)$ (inputs)
$d_{n}=\{0,1\}$ (targets)
Class ■ Class .

Classification problem

$x_{n}=x_{n 1}$ (inputs)
$d_{n}=x_{n 2}$ (targets)

Regression problem

Choice of activation function

Regression problem

Linear: $\varphi_{o}(x)=x$

Classification problem

Why these choices?

We have

$$
y(\mathbf{x}, \boldsymbol{\omega})=\varphi_{o}(\mathbf{x}, \boldsymbol{\omega}) \quad\left\{\mathbf{x}_{n}, d_{n}\right\}
$$

Denote: $\quad y_{n}=y\left(\mathbf{x}_{n}, \boldsymbol{\omega}\right)$

Task!

$$
y_{n}=d_{n}, \forall n
$$

How?

A very common approach is to construct an error (loss) function

$$
E=\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-d_{n}\right)^{2}
$$

Consider as a function
An example of an error/loss function! of the weights!

Minimizing E means "solving" the task (or at least an attempt to solve it)

Most common approaches are "gradient descent" methods

$$
\begin{gathered}
\Delta \omega_{i}=-\eta \frac{\partial E(\boldsymbol{\omega})}{\partial \omega_{i}} \\
\Delta \omega_{i}=-\eta \frac{1}{N} \sum_{n=1}^{N} \frac{\partial E_{n}(\boldsymbol{\omega})}{\partial \omega_{i}}
\end{gathered}
$$

Illustration!

See https://playground.tensorflow.org/ for more illustrations!

How do we use the perceptron?

New data point

prediction of $\mathbf{x}_{\text {new }}\left\{\begin{array}{lll}\text { class } 1 & \text { if } & y\left(\mathbf{x}_{\text {new }}\right)>\text { cut value } \\ \text { class } 0 & \text { if } & y\left(\mathbf{x}_{\text {new }}\right) \leq \text { cut value }\end{array}\right\}$

How do we use the perceptron?

Why do we not always use the perceptron?

Fundamental limitation!

Linear boundary and linear regression!

Can we understand why we have a linear boundary?

The XOR-problem cannot be solved by the perceptron!

We need the Multi-layer perceptron (MLP)

It is also important that we have non-linear activation functions in the hidden layer

The XOR-problem can be solved by this MLP!

The details of a one hidden layer MLP

$$
y_{i}\left(\mathbf{x}_{n}\right)=\varphi_{o}\left(\sum_{x_{k}} \omega_{i j} \varphi_{h}\left(\sum_{k} \tilde{\omega}_{j k} x_{n k}\right)\right)
$$

Common activation functions for the hidden layers

Also possible

Leaky ReLU

Maxout units

The MLP is mostly used for two kinds of tasks:

Classification: The algorithm is asked to predict one of k classes for which the input belongs to

Regression: Predict numerical outputs given an input

For classification problems we typically make a distinction between binary and multiple classification problems

Binary

A single output node:
Class 0: target value $=0$
Class 1: target value = 1

M classes

One-hot-encoding

Class 1: $\left[\begin{array}{lll}10 & 0 \ldots 0\end{array}\right]$ Class 2: $\left[\begin{array}{llll}1 & 1 & 0 & \ldots\end{array}\right]$

Class M: [0 000 ... 1]

Output activation functions for the MLP

Binary classification

 Regression M classes

Softmax

$$
y_{n i}=\frac{e^{a_{n i}}}{\sum_{i^{\prime}} e^{a_{n i^{\prime}}}}
$$

$a_{n i}=$ net input to output node i for pattern n

What about error/loss functions?

For binary classification we commonly use binary cross-entropy error/loss:

$$
E(\boldsymbol{\omega})=-\frac{1}{N} \sum_{n=1}^{N}\left(d_{n} \log y_{n}+\left(1-d_{n}\right) \log \left(1-y_{n}\right)\right)
$$

For M-class classification we commonly use categorical cross-entropy error/loss:

$$
E(\boldsymbol{\omega})=-\frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{M} d_{n i} \log y_{n i}
$$

And for regression we have mean squared error/loss:

$$
E(\boldsymbol{\omega})=\frac{1}{2 N} \sum_{n} \sum_{i}\left(d_{n i}-y_{n i}\right)^{2}
$$

How do we decide the error function?

A very common approach is to use the Maximum Likelihood principle
$X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\} \quad$ Training data drawn from $\quad p_{\text {data }}(\mathbf{x})$
$p_{\text {model }}(\mathbf{x} ; \theta) \quad$ Family of distributions modeled by $\quad \theta$

$$
\theta=\underset{\theta}{\operatorname{argmax}} p_{\text {model }}(X ; \theta)
$$

Maximum Likelihood

$$
=\underset{\theta}{\operatorname{argmax}} \prod_{n}^{N} p_{\text {model }}\left(\mathbf{x}_{n} ; \theta\right)
$$

Products are numerically tricky, better to take the log ...

$$
\theta=\underset{\theta}{\arg \max } \sum_{n}^{N} \log p_{\text {model }}\left(\mathbf{x}_{n} ; \theta\right)
$$

We can define the loss function to be

$$
E(\theta)=-\sum_{n}^{N} \log p_{\text {model }}\left(\mathbf{x}_{n} ; \theta\right)
$$

Conditional log likelihood

$$
E(\theta)=-\sum_{n}^{N} \log P_{\text {model }}\left(\mathbf{d}_{n} \mid \mathbf{x}_{n} ; \theta\right)
$$

Some simple examples

$$
\begin{gathered}
\text { MLP: } \\
1-4-1 \\
\text { (tanh - linear) }
\end{gathered}
$$

> 1D regression

$$
\begin{gathered}
\text { MLP: } \\
2-4-1 \\
(\tanh -\text { logistic) }
\end{gathered}
$$

How can I draw the red line that is the boundary between the classes?

We can also do this!!

What do we call this situation?

Let $\varphi(\cdot)$ be a sigmoidal function and let $f(x) \in \mathcal{C}\left(I_{m}\right)$ where $\mathcal{C}\left(I_{m}\right)$ is the set of all continuous functions defined over the m-dimensional hypercube $I_{m}=$ $[0,1]^{m}$. For any $\varepsilon>0$ there exists an integer N_{h} and a set of real constants: $\omega_{j}, \tilde{\omega}_{j k}, b_{j}\left(j=1, \cdots, N_{h}, k=1, \cdots, m\right)$ such that

$$
\begin{gathered}
\left|F\left(x_{1}, x_{2}, \cdots, x_{m}\right)-f\left(x_{1}, x_{2}, \cdots, x_{m}\right)\right|<\varepsilon \quad \forall x \in I_{m} \\
\text { where } \\
F\left(x_{1}, x_{2}, \cdots, x_{m}\right)=\sum_{j}^{N_{h}} \omega_{j} \varphi\left(\sum_{k=1}^{m} \tilde{\omega}_{j k} x_{k}+b_{j}\right) .
\end{gathered}
$$

Note 1: No information about the number of nodes needed Note 2: It also applies for classification problems Note 3: An updated version exists for ReLU activation functions

More on training the MLP. Some details of minimizing error/loss functions.

The gradient descent has the following basic update formula:

$$
\Delta \omega_{i}=-\eta \frac{\partial E}{\partial \omega_{i}}
$$

As an example for a one hidden layer MLP

$$
\begin{array}{rlr}
\text { input-to-hidden weights } & \Delta \tilde{\omega}_{j k} & =-\eta \frac{\partial E}{\partial \tilde{\omega}_{j k}} \\
\text { hidden-to-output weights } & \Delta \omega_{i j} & =-\eta \frac{\partial E}{\partial \omega_{i j}}
\end{array}
$$

As an example for MSE error/loss function

$$
E(\boldsymbol{\omega})=\frac{1}{2 N} \sum_{n=1}^{N} \sum_{i}\left(d_{n i}-y_{i}\left(\mathbf{x}_{n}\right)\right)^{2},
$$

and with output from the MLP given as

$$
y_{i}\left(\mathbf{x}_{n}\right)=\varphi_{o}\left(\sum_{j} \omega_{i j} \varphi_{h}\left(\sum_{k} \tilde{\omega}_{j k} x_{n k}\right)\right)=\varphi_{o}\left(\sum_{j} \omega_{i j} h_{n j}\right)
$$

we can easily compute the weight updates

$$
\begin{aligned}
\Delta \omega_{i j} & =-\eta \frac{\partial E}{\partial \omega_{i j}}=? \\
\Delta \tilde{\omega}_{j k} & =-\eta \frac{\partial E}{\partial \tilde{\omega}_{j k}}=?
\end{aligned}
$$

As an example for MSE error/loss function

$$
E(\boldsymbol{\omega})=\frac{1}{2 N} \sum_{n=1}^{N} \sum_{i}\left(d_{n i}-y_{i}\left(\mathbf{x}_{n}\right)\right)^{2}
$$

and with output from the MLP given as

$$
y_{i}\left(\mathbf{x}_{n}\right)=\varphi_{o}\left(\sum_{j} \omega_{i j} \varphi_{h}\left(\sum_{k} \tilde{\omega}_{j k} x_{n k}\right)\right)=\varphi_{o}\left(\sum_{j} \omega_{i j} h_{n j}\right)
$$

we can easily compute the weight updates

$$
\begin{aligned}
\Delta \omega_{i j} & =-\eta \frac{\partial E}{\partial \omega_{i j}}=\eta \frac{1}{N} \sum_{n} \underbrace{\left(d_{n i}-y_{i}\left(\mathbf{x}_{n}\right)\right) \varphi_{o}^{\prime}\left(\sum_{j^{\prime}} \omega_{i j^{\prime}} h_{n j^{\prime}}\right)}_{\equiv \delta_{n i}} h_{n j} \\
\Delta \tilde{\omega}_{j k} & =-\eta \frac{\partial E}{\partial \tilde{\omega}_{j k}}=\eta \frac{1}{N} \sum_{n} \sum_{i} \delta_{n i} \omega_{i j} \varphi_{h}^{\prime}\left(\sum_{k^{\prime}} \tilde{\omega}_{j k^{\prime}} x_{n k^{\prime}}\right) x_{n k}
\end{aligned}
$$

How do we compute gradients for a general feed-forward architecture?

Training an ML model, especially neural network models, involves minimizing the loss function with respect to model parameters

Very often one have to rely on numerical minimization procedures. The most common approach is gradient descent based methods

$$
\Delta \omega_{i}=-\eta \frac{\partial E(\boldsymbol{\omega})}{\partial \omega_{i}}
$$

Now very often

$$
E(\boldsymbol{\omega})=\frac{1}{N} \sum_{n}^{N} E_{n}(\boldsymbol{\omega})
$$

We can write

$$
\Delta \omega_{i}=\frac{1}{N} \sum_{n} \Delta \omega_{n i} \quad \checkmark \quad \text { per pattern update }
$$

Gradient descent improvements 1:

 Stochastic gradient descentGradient descent (GD) $\quad \Delta \omega_{i}=-\eta \frac{1}{N} \sum_{n=1}^{N} \frac{\partial E_{n}(\boldsymbol{\omega})}{\partial \omega_{i}}$

$P \ll N$
The collection P samples to use if called a mini-batch

Gradient descent improvements 2: Momentum

The momentum term adds a part of the previous update to the current

$$
\Delta \omega_{i}(t+1)=-\eta \frac{\partial E}{\partial \omega_{i}}+\alpha \Delta \omega_{i}(t)
$$

(Why is it called momentum?)

Gradient descent improvements 3: Individual learning rates - RPROP

Individual learning rates can handle the problem of different gradient sizes in different directions

$$
\begin{gathered}
\Delta \omega_{i j}=-\eta_{i j} \frac{\partial E}{\partial \omega_{i j}} \\
\text { RPROP }=\text { Resilient PROPagation } \\
\eta_{i j}(t)=\left\{\begin{array}{lll}
\gamma^{+} \eta_{i j}(t-1) & \text { if } & \frac{\partial E(t)}{\partial \omega_{i j}} \cdot \frac{\partial E(t-1)}{\partial \omega_{i j}}>0 \\
\gamma^{-} \eta_{i j}(t-1) & \text { if } & \frac{\partial E(t)}{\partial \omega_{i j}} \cdot \frac{\partial E(t-1)}{\partial \omega_{i j}}<0
\end{array}\right. \\
\text { with } \\
0<\gamma^{-}<1<\gamma^{+}
\end{gathered}
$$

But not used so much....

Gradient descent improvements 4:

 RMSPROP> RMSPROP (Root Mean Square Propagation) only uses one common learning rate, but it keeps a running average of the squared gradient for each weight that is used to normalize the magnitude of the gradient, thereby effectively introducing individual weights.

Running average

$$
v_{i}(t)=\gamma v_{i}(t-1)+(1-\gamma)\left(\frac{\partial E(t)}{\partial \omega_{i}}\right)^{2}
$$

Update the weight $\quad \omega_{i}(t+1)=\omega_{i}(t)-\frac{\eta}{\sqrt{v_{i}(t)}} \frac{\partial E(t)}{\partial \omega_{i}}$

To be computed using SGD

Gradient descent improvements 5:

ADAM (ADAptive Moment estimation)

In addition to keeping a running average of the square of the past gradients, as RMSPROP does, Adam also keeps a running average of the past gradients. We define,

$$
\begin{aligned}
m_{i}(t+1) & =\beta_{1} m_{i}(t)+\left(1-\beta_{1}\right) \frac{\partial E(t)}{\partial \omega_{i}} & & \hat{m}_{i}
\end{aligned}=\frac{m_{i}(t+1)}{1-\beta_{1}^{t}}
$$

$$
\begin{gathered}
\omega_{i}(t+1)=\omega_{i}(t)-\eta \frac{\hat{m}_{i}}{\sqrt{\hat{v}_{i}}+\epsilon} \\
\left(\beta_{1}=0.9, \beta_{2}=0.999 \text { and } \epsilon=10^{-8}\right)
\end{gathered}
$$

Adam is very popular!!

Many different methods

Are we now ready to start training?

OK!

- Dataset
- Choice of architecture
- Choice of activation functions
- Choice of error/loss function
- How to minimize

What about?

- Pre-processing of input data
- Measuring the performance

Pre-processing of input data

We need to compensate for different input sizes

Compute
Mean $\quad \mu_{k}=\frac{1}{N} \sum_{n=1}^{N} x_{n k} \quad$ Std $\quad \sigma_{k}=\sqrt{\frac{1}{N} \sum_{n=1}^{N}\left(x_{n k}-\mu_{k}\right)^{2}}$

Transform

$$
x_{n k} \rightarrow \frac{x_{n k}-\mu_{k}}{\sigma_{k}} \quad \forall n, k
$$

More pre-processing of input data

- Missing data imputation
- Encoding
- Dimensionality reduction
- Feature selection
- More pre-processing

Encoding

Feature:

Numerical value
Binary category
Many categories

```
< 5 years
[5, 10] years
> }10\mathrm{ years
```

Text

Input:

Numerical value
Often 0/1 encoding
Often one-hot-encoding

```
[1 O 0]
[0 1 0]
[0 O 1]
```

"Many possibilities", e.g. word2vec

How to measure performance - regression problems

RMSE $\quad E=\sqrt{\frac{1}{N} \sum_{n}^{N}\left\|\mathbf{d}_{n}-\mathbf{y}\left(\mathbf{x}_{n}, \boldsymbol{\omega}^{*}\right)\right\|^{2}}$

Normalized MSE

$$
E=\frac{\sum_{n}\left\|\mathbf{d}_{n}-\mathbf{y}\left(\mathbf{x}_{n}, \boldsymbol{\omega}^{*}\right)\right\|^{2}}{\sum_{n}\left\|\mathbf{d}_{n}-<\mathbf{d}>\right\|^{2}}
$$

Scatterplot
True vs. predicted

Compute correlation!

How to measure performance - binary classification problems

Confusion matrix

Actual

TP = True Positives TN = True Negatives
FP = False Positives FN = False Negatives

Actual

$$
\text { Accuracy }=\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Why can accuracy be misleading?

Actual

$$
\text { Precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}
$$

Confusion matrix, also for many classes

For binary classification problems it is common to use the Receiver Operating Characteristics (ROC) curve and the area under it (AUC)

To make a decision for a class, we need a cut value (C)

$$
\left\{\begin{array}{lll}
\text { class } 1(\mathrm{pos}) & \text { if } & y(\mathbf{x})>\mathrm{C} \\
\text { class } 0(\mathrm{neg}) & \text { if } & y(\mathbf{x}) \leq \mathrm{C}
\end{array}\right\}
$$

For each C we get a Sensitivity / Specificity pair
Vary C between $[0,1]$ and plot all Sens vs (1-Spec)
This is the ROC curve!

An example

What does the area mean?

We can plot more things!

We now ready to start training!

OK!

- Dataset
- Choice of architecture
- Choice of activation functions
- Choice of error/loss function
- How to minimize
- Pre-processing of input data
- Measuring the performance

Some examples!
MLP: 1 hidden node

MLP: 2 hidden nodes

MLP: 4 hidden nodes

MLP: 7 hidden nodes

MLP: 12 hidden nodes

MLP: 25 hidden nodes

The 2D spiral classification problem

MLP: 2-10-1
spir-10-GD: No misses $=69$

MLP: 2-40-1
spir-40-GD: No misses = 3

MLP: 2-150 - 1
spir-150-GD: No misses = 0

MLP: 2-5-5-5-1

Pre-processing helps

This can be solved by an MLP: 2-6-1

$$
\text { MLP: } 2-50-30-2-6-1
$$

Third hidden layer values

$$
\text { MLP: } 2-50-100-2-6-1
$$

Third hidden layer values

$$
\text { MLP: } 2-40-35-2-1-1
$$

Third hidden layer values

More on regularization

L2 and L1 regularization

$$
\tilde{E}(\mathbf{w}, \alpha)=E(\mathbf{w})+\alpha \Omega
$$

L2 norm (weight decay)

$$
\Omega=\frac{1}{2} \sum_{i} \omega_{i}^{2}
$$

$$
\begin{aligned}
& \text { L1 norm (lasso) } \\
& \Omega=\frac{1}{2} \sum_{i}\left|\omega_{i}\right|
\end{aligned}
$$

Modified L2 norm

$$
\Omega=\frac{1}{2} \sum_{i} \frac{\left(\omega_{i} / \omega_{o}\right)^{2}}{1+\left(\omega_{i} / \omega_{o}\right)^{2}}
$$

Early stop

Another alternative to regularization as a way of controlling the complexity of a network is the procedure of early stopping.

If we estimate the generalization error using a separate validation set we can stop the training when the validation error starts to increase.

Dropout regularization

Other regularization techniques and ways of avoiding overfitting:

- Ensemble techniques
- Data augmentation
- ...

Some final words on deep MLPs

Deep MLPs

rather than this?

Deep MLPs

Empirically, deeper seems to give better generalization

(Image classification experiments)

(From the deep learning book:
https://www.deeplearningbook.org/contents/mlp.html)

Deep learning = Representation learning

Rectangle or circle?

Which representation to use?

Deep learning = Representation learning

Small or large area?
Which representation to use?

]

Feature learning

Feature learning for "CNNs"

