
Convolutional Neural Network (CNN)

Special neural network architecture
 for image analysis

To understand the construction of a CNN we
need to introduce filters/kernels

Filtered image

Here is a small numerical example where a
4x4 image matrix is filtered by a 2x2 kernel.

The box average kernel

OutlineEmboss

Left SobelTop Sobel

Have fun with kernels!

http://setosa.io/ev/image-kernels/

….

In CNNs we train filters of various sizes!

How can we “implement” the filter process
in a neural network architecture?

We need sparse connectivity and weight sharing

Fully connected input-to-hidden
layer in an MLP. h

3
 is receiving

inputs from all input nodes.

The same MLP but with fewer weights.
h

3
 is receiving inputs from
only three input nodes.

receptive field

1D case

But we also need weight sharing to
simulate the filter process.

Same color = shared weights

Here, 25 (unique) weights
(excluding bias)

Here, 3 (unique) weights
(excluding bias)

Dramatic reduction of trainable weights, compared
to a fully connected network

2D images have 2D kernels

Note: each hidden node share the weights with all other hidden nodes.

CNN building blocks

Some version of ReLU

Pooling?

No downsampling!

With downsampling!

Pooling layer

Some details of the filter process

Example: 7x7 image, with a 3x3 kernel
 moving 1 pixel each time (stride=1)
 gives a 5x5 filtered image (= hidden nodes)

Example: 7x7 image, with a 3x3 kernel
 moving 2 pixel each time (stride=2)
 gives a 3x3 filtered image

Keep the original size by using zero padding

Example: 7x7 image, with a 3x3 kernel
 stride=1, zero padding
 gives a 7x7 filtered image

P = padding
S = stride
F = filter size

With multichannel images (color) we just add
one (2D) filter for each channel

Remember: Filters always extend to the full dept of the input image

Regardless of input depth, the output has depth = 1

We have 27 weights in the filter + 1 bias weight!!

Example where 5 filters will result
in a 5-channel filtered image.

Again the building blocks

One of the very first CNNs (Lecun, 1998). This one is called LeNet-5.

Some examples of “famous” CNNs

Alexnet, Winner of ILSVRC competition 2012.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

ImageNet classification (ILSVRC)
Large Scale Visual Recognition Challenge (2012)

● 1000 objects
● 1.2 million training images
● 100 000 test images

Winner: AlexNet

AlexNet single GPU equivalent

First convolutional layer

● Images: 227x227x3
● Filter size: 11x11
● Stride: 4
● Conv layer output: 55x55x96

First convolutional layer

● Images: 227x227x3
● Filter size: 11x11
● Stride: 4
● Conv layer output: 55x55x96

Why this output size?

(227-11)/4 + 1 = 55

First convolutional layer

● Images: 227x227x3
● Filter size: 11x11
● Stride: 4
● Conv layer output: 55x55x96

How many weights?

(11*11*3+1) weights per filter
96 filters

(11*11*3+1)*96 = 34944 weights

The 96 filters from the first conv. Layer.

(11x11x3)

Remember the idea of deep learning:

Basic features → features → more advanced features → advanced features →
→ classification

GoogleNet, Winner of ILSVRC competition 2014.

Microsoft ResNet, Winner of ILSVRC competition 2015.

Machine learning playgrounds

http://ml-playground.com/

https://playground.tensorflow.org/

http://ml-playground.com/
https://playground.tensorflow.org/

https://experiments.withgoogle.com/collection/ai

https://cs.stanford.edu/people/karpathy/convnetjs/

https://experiments.withgoogle.com/collection/ai
https://cs.stanford.edu/people/karpathy/convnetjs/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

