
Content of this lecture

1. Time delay network
2. Recurrent networks, the general type
3. Recurrent networks, LSTM and GRU types
4. LSTM architectures …
5. Combination of architectures

Recurrent Neural Networks (RNN)

(Common google images when searching for RNN)

But these are also recurrent networks

Echo state networkHopfield model

● Common for all neural network models we have studied so
far is the lack of feedback connections. We will now study
networks with such connections!

● Recurrent networks are typically used when we are dealing
with sequence data. It can be text data, speech data, image
data or numerical times series data coming from eg. sensors
or stock markets. And combinations of all these!

● The feedback connections are used to capture the short and
long term temporal dependencies in the data.

Recurrent Neural Networks

What is it that recurrent networks offer?

Sofar, one-to-one problems!

Image
(one object)

classification

many-to-one one-to-many

eg. text (sequence of words)

eg. classification

eg. image

eg. caption

With recurrent networks

many-to-many many-to-many

eg. text

eg. text

eg. another
 sequence

eg. sequence

Time delay networks (auto regressive model)

We will however start simple, by
using an ordinary MLP for a specific

task using sequence data.

Suppose we have a time series:

Task:

Predict

 0

 5 0

 100

 150

 200

 250

 300

 1800 1850 1900 1950 2000 2050

Ye
ar

ly
 m

ea
n

to
ta

l
su

ns
po

t
nu

mb
er

Ye a r

Sunspot numbers

An example: The yearly sunspot number!

The approach is to use a fixed number of
”previous” values of x(t) in order to predict x(t+)

As an example we can create the following
input-output dataset for the sunspot data

using 5 history data points:

We can train an ordinary MLP
for this regression problem

MLP: 5 inputs, 4 hidden nodes, a single linear output node.

NMSE = Normalized mean squared error

Obvious drawback! Need to specify the number of history values to use!

Simple recurrent networks, general type!

A simple 1-1-1 MLP This network has a “true” feedback
connection from the hidden output

feeding into itself.

Given:

Let’s be explicit for a few time steps!

Do we recognize this structure?

Unfolding in time!

The unfolded network is an MLP with 4 hidden layers,
sparsely connected and shared weights.

Backpropagation through time (BPTT)
(= basically training the unfolded MLP)

Assume an error of this kind!

Can measure the difference between
a target sequence and an input sequence

But many other possibilities, eg. classification of sequences.

To do gradient descent we need to compute derivatives!

The network

The V weight is rather simple!

(Remember)

The other two are more complicated! For
the W weight we get:

Now,

Depends on W

The correct expression:

Is this a problem?

This is also a chainrule

For example

Now each

To conclude: Training a simple recurrent network like this, for
long sequences, involves multiplication of many terms like,

Two numerical problems can occur:

● Vanishing gradients
● Exploding gradients

Where vanishing gradients are probably most common!

As a result it is difficult to learn long term dependencies!

How do we solve this?

First approach: Truncated backpropagation through time!

Here it is important to preserve the state between updates!

Second approach: Change the behavior of the hidden node
as to have a more or less constant value of the recursive derivative.

→ LSTMs

Before that let’s just conclude by noting that the simple
recurrent network can be more complicated than what we have

showed here. As an example:

Two input, three hidden nodes. Unfolded one time step!

Long short-term memories (LSTM)

Previously we had networks like this, where the “U”
box represents the simple recurrent unit.

For a LSTM network we simply replace the “U” box with
a LSTM box and add a new connection,

So in a sense it is similar to the previous network (apart from the
”c” value. However the LSTM box is more complicated than the “U” box!

The usual hidden state (or the output
of the hidden node)

Internal memory of the LSTM node. Is not “exported”!

Details of the LSTM node!

In addition to the internal memory c
t
 we have so called gates

They are all number between 0 and 1, and are used to
”filter” new values for the memory and hidden state.

= new weights!

The internal calculation is done as follows:

1. New candidate value for the
 internal memory.

2. New internal memory

3. New hidden value

The new memory value is a combination of the previous value filtered by
the forget gate and the candidate value filtered by the input gate.

The new output of the LSTM node (h
t
) is the memory “squashed” by the

tanh() and filtered by the output gate.

It is the gating mechanism that allows the LSTM network
to model long-term dependencies.

There are many illustrations of the LSTM node, here is one:

From a good blog:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Can we understand why the LSTM handles the
vanishing gradient problem?

Previously we looked at

A corresponding derivative is now:

The details are not important, but:

● We will multiply many such terms
● The terms can be both > 1 and < 1
● In a sense the network can learn when gradients should vanish!!

Numerical example! RNN as a pulse converter

Simple recurrent network with 5 hidden nodes (no LSTM)

(41 trainable weights! How?)

Test error: 0.47

(41 trainable weights! How?)

(5+1) + 5x5 + 5x(1+1) = 41

LSTM network with 5 hidden nodes!

(146 trainable weights!)

Test error: 0.08

Simple recurrent network with 10 hidden nodes!

(131 trainable weights)

Test error: 0.27

Multilayer LSTMs

LSTM network with 5 – 3 nodes!

(252 trainable weights!)

Test error: 0.04

GRU network with 5 – 3 nodes!

(190 trainable weights!)

Test error: 0.03

The inverse problem is more difficult!

Test error: 0.07

LSTM network with 25 hidden nodes!

(2726 trainable weights!)

Even with LSTMs it is very common to
use truncated BPTT!

But typically with more than 4 times steps!!!

LSTM variant, The Gated Recurrent Unit (GRU)

Simpler version of the LSTM unit. Introduced 2014!
The core idea is the same, but it is simpler.

No memory and only two gates.

Reset gate

Update gate

Candidate output

Output

Bidirectional LSTMs

Putting two independent LSTMs together, one for the
forward sequence and one for the reverse sequence.

Useful when the context of the input is needed.

CNN LSTM architectures

These architectures combine the CNN for dealing with
images and LSTM for the sequnce part. Examples:

Activity recognition: image sequence to classification
Image description: image to text sequence (caption)
Video description: video sequence to sequence (description)

Two “early” papers:

Show and Tell: A Neural Image Caption Generator (Link)

Long-term Recurrent Convolutional Networks for
Visual Recognition and Description (Link)

https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4389.pdf

Example of a caption generator:

A last example: Sampling from a character model

Task: given a sequence of characters, predict the next character!

One, two, thre?

My name i?

In this specific example the training sequence
is the source code of (some earlier version) Tensorflow.

This is C++ code!

About 14 million characters in the sequence!

The model:

Two layers of 1024
LSTMs each

About 13 million
parameters

103 different characters
in the code

Skip layer connections

Since the output are probabilities for the 103 different
characters, we can sample from the model:

[0.1, 0.3, 0.5, 0.1, 0.0]As a simple example

Five characters (A, B, C, D, E)

The probability for ‘C’ is 50%, for ‘B’ 30% and so on.

The sampled character is then used as the
new input to the (trained) model.

void AddShapeMemoryTranspose(const Key& key, const AllocatorAttributes attr) {
 VLOG(2) << "Instanding worker threads with dues to set cuSolveDDe gradient for: " << variant->devices[0]->env_;
 def.label_fills.push_back(TestMultipleWrites());
 std::unique_ptr<thire> locks(0);
 done(e->src(), cinfo->comp_device_context);
 return Status::OK();
}
Status GetStatusResponse::NewAppendable(string* stable_compress_ptr, class LoggingPand& BaseRendezvous,
 const CreateSing& conten

Seed: “void “

printf("%s",
 strings::StrCat(true), ">");
 }
 if (!s.ok()) {
 for (Node* n = 0; node : merge.nodes n& y_noded && (n->dst_node == train_num ==
 CreateNodeDef(SIGEDMB, DT_FLOAT)) // Dsty in different device:
 for (int i = 0; i < N; ++i) {
 (*(start_times[idx].ptr = nullptr) || (i == 1) ? Padding == Padding::VALID:
 (*is_log);
 }
 output_memory_usage = strings::StrCat(prefix, ", successfully.");
 }
 }
 list_type_list.set_select(tf_stat.m_def)

Seed: “printf(“

Alternative approaches to Recurrent Networks

● CNN models
(Comparison article 1,
Comparison article 2)

● The Attention family of networks
 (e.g. Transformer network).

Ref1, Ref2
Example: “Talk to transformer”

https://arxiv.org/abs/1702.01923
https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://talktotransformer.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

