
Content of this lecture

1. Time delay network
2. Recurrent networks, the general type
3. Recurrent networks, LSTM and GRU types
4. LSTM architectures …
5. Combination of architectures

Recurrent Neural Networks (RNN)



(Common google images when searching for RNN)



But these are also recurrent networks

Echo state networkHopfield model



● Common for all neural network models we have studied so 
far is the lack of feedback connections. We will now study 
networks with such connections!

● Recurrent networks are typically used when we are dealing 
with sequence data. It can be text data, speech data, image 
data or numerical times series data coming from eg. sensors 
or stock markets. And combinations of all these! 

● The feedback connections are used to capture the short and 
long term temporal dependencies in the data. 

Recurrent Neural Networks

What is it that recurrent networks offer?



Sofar, one-to-one problems! 

Image
(one object)

classification



many-to-one one-to-many

eg. text (sequence of words)

eg. classification

eg. image

eg. caption

With recurrent networks



many-to-many many-to-many

eg. text

eg. text

eg. another 
      sequence

eg. sequence



Time delay networks (auto regressive model)

We will however start simple, by 
using an ordinary MLP for a specific 

task using sequence data.



Suppose we have a time series:

Task:

Predict 
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Sunspot  numbers

An example: The yearly sunspot number!



The approach is to use a fixed number of
”previous” values of x(t) in order to predict x(t+)

As an example we can create the following
input-output dataset for the sunspot data

using 5 history data points: 



We can train an ordinary MLP 
for this regression problem



MLP: 5 inputs, 4 hidden nodes, a single linear output node.

NMSE = Normalized mean squared error



Obvious drawback! Need to specify the number of history values to use!



Simple recurrent networks, general type!

A simple 1-1-1 MLP This network has a “true” feedback
connection from the hidden output

feeding into itself.



Given:



Let’s be explicit for a few time steps!

Do we recognize this structure?



Unfolding in time!

The unfolded network is an MLP with 4 hidden layers,
sparsely connected and shared weights.



Backpropagation through time (BPTT) 
(= basically training the unfolded MLP)

Assume an error of this kind!

Can measure the difference between
a target sequence and an input sequence

But many other possibilities, eg. classification of sequences.



To do gradient descent we need to compute derivatives!

The network



The V weight is rather simple!

(Remember)



The other two are more complicated! For
the W weight we get:

Now, 

Depends on W

The correct expression:



Is this a problem?

This is also a chainrule

For example

Now each 



To conclude: Training a simple recurrent network like this, for
long sequences, involves multiplication of many terms like,

Two numerical problems can occur:

● Vanishing gradients
● Exploding gradients

Where vanishing gradients are probably most common!

As a result it is difficult to learn long term dependencies! 



How do we solve this?

First approach: Truncated backpropagation through time! 

Here it is important to preserve the state between updates!



Second approach: Change the behavior of the hidden node
as to have a more or less constant value of the recursive derivative.

→ LSTMs

Before that let’s just conclude by noting that the simple
recurrent network can be more complicated than what we have

showed here. As an example:

Two input, three hidden nodes. Unfolded one time step!



Long short-term memories (LSTM)

Previously we had networks like this, where the “U”
box represents the simple recurrent unit.



For a LSTM network we simply replace the “U” box with
a LSTM box and add a new connection,

So in a sense it is similar to the previous network (apart from the
”c” value. However the LSTM box is more complicated than the “U” box!



The usual hidden state (or the output
of the hidden node)

Internal memory of the LSTM node. Is not “exported”!



Details of the LSTM node!

In addition to the internal memory c
t
 we have so called gates 

They are all number between 0 and 1, and are used to 
”filter” new values for the memory and hidden state.

= new weights!



The internal calculation is done as follows: 

1. New candidate value for the
    internal memory.

2. New internal memory

3. New hidden value

The new memory value is a combination of the previous value filtered by
the forget gate and the candidate value filtered by the input gate.

The new output of the LSTM node (h
t
) is the memory “squashed” by the 

tanh() and filtered by the output gate.

It is the gating mechanism that allows the LSTM network 
to model long-term dependencies.



There are many illustrations of the LSTM node, here is one:

From a good blog:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Can we understand why the LSTM handles the
vanishing gradient problem?

Previously we looked at

A corresponding derivative is now:



The details are not important, but:

● We will multiply many such terms
● The terms can be both > 1 and < 1
● In a sense the network can learn when gradients should vanish!!



Numerical example! RNN as a pulse converter



Simple recurrent network with 5 hidden nodes (no LSTM)

(41 trainable weights! How?)

Test error: 0.47



(41 trainable weights! How?)

(5+1) + 5x5 + 5x(1+1) = 41



LSTM network with 5 hidden nodes!

(146 trainable weights!)

Test error: 0.08



Simple recurrent network with 10 hidden nodes!

(131 trainable weights)

Test error: 0.27



Multilayer LSTMs



LSTM network with 5 – 3 nodes!

(252 trainable weights!)

Test error: 0.04



GRU network with 5 – 3 nodes!

(190 trainable weights!)

Test error: 0.03



The inverse problem is more difficult!



Test error: 0.07

LSTM network with 25 hidden nodes!

(2726 trainable weights!)



Even with LSTMs it is very common to
use truncated BPTT!

But typically with more than 4 times steps!!!



LSTM variant, The Gated Recurrent Unit (GRU) 

Simpler version of the LSTM unit. Introduced 2014! 
The core idea is the same, but it is simpler. 

No memory and only two gates. 

Reset gate

Update gate

Candidate output

Output



Bidirectional LSTMs

Putting two independent LSTMs together, one for the 
forward sequence and one for the reverse sequence.

Useful when the context of the input is needed.



CNN LSTM architectures

These architectures combine the CNN for dealing with
images and LSTM for the sequnce part. Examples:

Activity recognition: image sequence to classification
Image description: image to text sequence (caption)
Video description: video sequence to sequence (description)

Two “early” papers:

Show and Tell: A Neural Image Caption Generator (Link)

Long-term Recurrent Convolutional Networks for 
Visual Recognition and Description (Link)

https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4389.pdf


Example of a caption generator:



A last example: Sampling from a character model

Task: given a sequence of characters, predict the next character! 

One, two, thre?

My name i?

In this specific example the training sequence 
is the source code of (some earlier version) Tensorflow.

This is C++ code!

About 14 million characters in the sequence!  



The model:

Two layers of 1024
LSTMs each

About 13 million 
parameters

103 different characters
in the code

Skip layer connections



Since the output are probabilities for the 103 different
characters, we can sample from the model: 

[0.1, 0.3, 0.5, 0.1, 0.0]As a simple example

Five characters (A, B, C, D, E)

The probability for ‘C’ is 50%, for ‘B’  30% and so on.

The sampled character is then used as the 
new input to the (trained) model.



void AddShapeMemoryTranspose(const Key& key, const AllocatorAttributes attr) {
  VLOG(2) << "Instanding worker threads with dues to set cuSolveDDe gradient for: " << variant->devices[0]->env_;
  def.label_fills.push_back(TestMultipleWrites());
  std::unique_ptr<thire> locks(0);
  done(e->src(), cinfo->comp_device_context);
  return Status::OK();
}
Status GetStatusResponse::NewAppendable(string* stable_compress_ptr, class LoggingPand& BaseRendezvous,
                         const CreateSing& conten

Seed: “void “

printf("%s",
                          strings::StrCat(true), ">");
  }
  if (!s.ok()) {
    for (Node* n = 0; node : merge.nodes n& y_noded && (n->dst_node == train_num ==
        CreateNodeDef(SIGEDMB, DT_FLOAT))  // Dsty in different device:
    for (int i = 0; i < N; ++i) {
      (*(start_times[idx].ptr = nullptr) || (i == 1) ? Padding == Padding::VALID:
      (*is_log);
    }
    output_memory_usage = strings::StrCat(prefix, ", successfully.");
    }
  }
  list_type_list.set_select(tf_stat.m_def)

Seed: “printf(“



Alternative approaches to Recurrent Networks

● CNN models
(Comparison article 1, 
Comparison article 2)

● The Attention family of networks
 (e.g. Transformer network).

Ref1, Ref2
Example: “Talk to transformer”

https://arxiv.org/abs/1702.01923
https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://talktotransformer.com/
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