Recurrent Neural Networks (RNN)

Content of this lecture

1. Time delay network

2. Recurrent networks, the general type

3. Recurrent networks, LSTM and GRU types
4. LSTM architectures ...

5. Combination of architectures

(Common google images when searching for RNN)

Recurrent Neural Network Feed-Forward Neural Network

Long-Short Term Memory module: LSTM

) ® @
| I t

L ; N,
=
A | bebsTll| A

J o \q

I |
& &) &

long-short term memory modules used in an RNN

http://colah.github io/posts/2015-08-Understanding-LSTMs/ EUgenio Culurciello

But these are also recurrent networks

Hopfield model Echo state network

Recurrent Neural Networks

e Common for all neural network models we have studied so
far is the lack of feedback connections. We will now study
networks with such connections!

* Recurrent networks are typically used when we are dealing
with sequence data. It can be text data, speech data, image
data or numerical times series data coming from eg. sensors
or stock markets. And combinations of all these!

» The feedback connections are used to capture the short and
long term temporal dependencies in the data.

What is it that recurrent networks offer?

Sofar, one-to-one problems!

classification

Image
(one object)

With recurrent networks

many-to-one one-to-many

7 \

eg. text (sequence of words) eg. image

eg. classification — »

many-to-many many-to-many

R

7 7

eg. text eg. sequence

eg. another

/ sequence

eg. text

We will however start simple, by
using an ordinary MLP for a specific
task using sequence data.

Time delay networks (auto regressive model)

Suppose we have a time series:

Predict x(t+1)

Sunspot nunber's

An example: The yearly sunspot number!

300

250}

200}

150

100
5

Jaqunu jodsuns g0} Ueau A |Jean

2050

2000

1950

1900

1850

1800

Year

The approach is to use a fixed number of
"previous” values of x(t) in order to predict x(t+)

As an example we can create the following
input-output dataset for the sunspot data
using 5 history data points:

Data no | Input Target
1 x(t—1),x(t—2),2(t —3),x(t —6),z(t —12) | z(t)

2 x(t—2),x(t—3),x(t—4),z(t —7),x(t—13) | z(t —1)
3 x(t—3),x(t —4),x(t —5),x(t —8),z(t —14) | x(t — 2)

Data no | Input Target

1 x(t—1),x(t —2),x(t —3),x(t —6),x(t —12) | x(t)
2 x(t—2),x(t—3),x(t —4),2(t —7),x(t —13) | x(t —1)
3 x(t—3),x(t—4),z(t —5),x(t —8),x(t —14) | x(t — 2)

We can train an ordinary MLP
for this regression problem

T
"7 .

b

V
P
Q

i

MLP: 5 inputs, 4 hidden nodes, a single linear output node.

300
200
100 |

0

1

e

I

Training: Single step prediction (red = network) : NMSE = 0.1303

1700

1750

1800

1850

1900

1950

Teséé g‘:ingle step prediction (red = network) : NMSE = 0.1286 (dummy 0.38¢

200
100
0

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

T%%%: Iterated prediction (red = network) : NMSE = 1.6578 (dummy 0.3898

200
100
0

N
1

1930

1940

1950

1970

1980

1990

2000

NMSE = Normalized mean squared error

2010

2020

Data no | Input Target

1 x(t—1),2(t—2),x(t —3),z(t —6),x(t —12) | x(t)
2 x(t—2),x(t—3),x(t—4),x(t —7),x(t —13) | x(t —1)
3 x(t—3),x(t—4),z(t —5),x(t —8),x(t —14) | x(t — 2)

Obvious drawback! Need to specify the number of history values to use!

Simple recurrent networks, general type!

=~

A simple 1-1-1 MLP

th

U

]
X

This network has a “true” feedback
connection from the hidden output
feeding into itself.

Let’s be explicit for a few time steps!

(to avoid clutter:

VhO — go

Vhi] = go
Vi

— Yo

Vgn(Uxo)|

x(t) — x¢, h(t) — hy)

(using the initial condition h(—

Do we recognize this structure?

(1) =0)

Von(Uz1 +Who)| = go|Van(Uz1 + Wgn(Uxo))]|
Vgh(UZUQ + Whl)}

Vgh(U:cg + Wan(Uz1 + Why))]

Vo (Uzs + Wou (Uny + Wau (Uno))) |

Y

9

Unfolding
h D W o
in time
H = B I H
X Xo X, X, X,

y(2) = go {Vgh (U:zzg + Wagn (Ua:l + Wagn (UCBo)))]
Unfolding in time!

The unfolded network is an MLP with 4 hidden layers,
sparsely connected and shared weights.

Backpropagation through time (BPTT)
(= basically training the unfolded MLP)

Assume an error of this kind!

EU,W,V) ZEt

Can measure the difference between
a target sequence and an input sequence

But many other possibilities, eg. classification of sequences.

To do gradient descent we need to compute derivatives!

The network

Unfolding

in time

ok
oV

OF
ow

OF
oU

OFE;
oV
OFE;
oW
OFE;
oU

The V weight is rather simple!

aEt 3Et @yt (9Et /
GV By 0V g, eVl

(Remember)

Yt = Yo (Vht)
hy = gn (Uzy +Why_1)

It

The other two are more complicated! For
the W weight we get:

oW 9y, Ohy OW

Now,

= gn(Uzy +Whi_y)

A

Depends on W

The correct expression:

0Et Z 8Et 8yt 8ht ahk

Is this a problem?

(9Et Z 5’Et 6’yt aht Cahk

AN

This is also a chainrule

Ohs Ohg Ohs
For example —— =
Ohy Ohg Ohy
oh
Now each i g ()W

Ohy

To conclude: Training a simple recurrent network like this, for
long sequences, involves multiplication of many terms like,

g, ()W

Two numerical problems can occur:

* Vanishing gradients
* Exploding gradients

Where vanishing gradients are probably most common!

As a result it is difficult to learn long term dependencies!

How do we solve this?

First approach: Truncated backpropagation through time!

Lttt]

e - - L - L - - - - -

rrrrrr T

Forward pass, 4 time stepsh Forward pass, 4 time stepsh Forward pass, 4 time steps

Backward pass, 4 time steps _.B‘ackward pass, 4 time steps Eackward pass, 4 time steps
i

Update 1 Update 2 Update 3

Here it is important to preserve the state between updates!

Second approach: Change the behavior of the hidden node
as to have a more or less constant value of the recursive derivative.
- LSTMs

Before that let’s just conclude by noting that the simple
recurrent network can be more complicated than what we have
showed here. As an example:

Two input, three hidden nodes. Unfolded one time step!

Long short-term memories (LSTM)

Previously we had networks like this, where the “U”
box represents the simple recurrent unit.

ht ht+1 ht+2 ht+3
Unfolding T T T T
2 , y ¥ U
]] ht ht+1 ht+2
in time l l l l
X X X X

t t+1 t+2 t+3

For a LSTM network we simply replace the “U” box with
a LSTM box and add a hew connection,

h

|

i

C,
——
LSTM unit
——f~
h,
X

f

So in a sense it is similar to the previous network (apart from the
"c” value. However the LSTM box is more complicated than the “U” box!

i+1

h

i+2

‘ T
Ct+1
o
LSTM unit LSTM unit
-
ht+1
X X

t+1

t+2

The usual hidden state (or the output
of the hidden node)

RN N \ TN

~h, heyy i)
N 4 N 4 A
G Ceun,

LSTM unit LSTM unit LSTM unit
ht ht+1
Xt Xt+1 Xt+2

Internal memory of the LSTM node. Is not “exported”!

Details of the LSTM node!

In addition to the internal memory ¢ we have so called gates

input gate i = a(xtUi +hy W'+ b;)
forget gate f = o(z, U + he W/ + by)
output gate o = o(xtU°+ hy—1W° + b,)

They are all number between 0 and 1, and are used to
"filter” new values for the memory and hidden state.

(UL, ut,u0), Wi WIH WO, (b, bs,b,) = new weights!

The internal calculation is done as follows:

1. New candidate value for the ¢ = tanh(x,U° + hy_1 W + b,.)
internal memory.

2. New internal memory ct = Ci_1f + Gt

3. New hidden value h; = tanh(c;)o

The new memory value is a combination of the previous value filtered by
the forget gate and the candidate value filtered by the input gate.

The new output of the LSTM node (h)) is the memory “squashed” by the
tanh() and filtered by the output gate.

It is the gating mechanism that allows the LSTM network
to model long-term dependencies.

There are many illustrations of the LSTM node, here is one:

T A

™ 4 N /’

el e 3) @— >
danh>
A Qe A
(o] [&r] [0]

—p >

J /O

From a good blog:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Can we understand why the LSTM handles the
vanishing gradient problem?

oh
Previously we looked at b+l

hut

aCt

A corresponding derivative is now: 5
Ct—1

aCt

dei—q

—ci_10' ()W o04_1 tanh’(c;_1)
+Et0’(-)W7;0t_1 tanh'(c;_1)
+iy tanh(-)W 0,_; tanh'(c;_1)
+ /i

The details are not important, but:

* We will multiply many such terms
* Theterms can be both>1and<1
* In a sense the network can /learn when gradients should vanish!!

Numerical example! RNN as a pulse converter

0.3

06 1

04 4

0.2 1

00

—— Training, input sequence

08 1
0o
04 1
02 1

0L

—— Training, target sequence

T
0 20 40 60 80 100

100 4

075+

050 1

025 1

0.00 1

—— Test, input sequence

0 20 40 &0 80 100

100 A

075 ~

050 -

025 1

000 1

— Test, target sequence

Simple recurrent network with 5 hidden nodes (no LSTM)

(41 trainable weights! How?)

0.8 A

06 1

0.4 1

0.2

0.0 1

—— Training

, input sequence

Ty

T
100

0.8 1

0.6

0.4 1

0.2 1

0.0+

—=— Test, target sequnce

- Test, predicted sequence

40
Hidden node outputs

-0.25

—0.50

-0.75 1

Test error: 0.47

(41 trainable weights! How?)

Blas Y | 5x5 of these

(5+1) + 5x5 + 5x(1+1) = 41

LSTM network with 5 hidden nodes!

(146 trainable weights!)

—=— Training, input sequence
08 -

06 1

04 1

02

0.0 1 T

T T T T T T
0 20 40 (] B0 100

—=— Test, target sequnce
+— Test, predicted sequence

g
06
04

02 4

00 A

40
Hidden node outputs

050 4
025

0.00
-0.25 1
—0.50 1
=0.75

—1.00 A

Test error: 0.08

= Training, input sequence

(131 trainable weights)

100
T
100

- Test, predicted sequence

—=— Test, target sequnce

Simple recurrent network with 10 hidden nodes!

T
20

e
]’.ié{'.
NN
R

] w =+ =] wow = N o o] =]] =

100

Test error: 0.27

20

Multilayer LSTMs

Second layer | LSTM unit

¥

L

First layer LSTM unit

¥

LSTM unit

i

b
LSTM unit L

i+1

LSTM unit

f

LSTM unit

Ji'.'[+2

075 -

0.50 4

0.25 1

0.00 1

0.75 4

0.50 1

0.25 -

0.00 A

05 4

0.0 -

0.5 4

LSTM network with 5 — 3 nodes!

(252 trainable weights!)

M\JM * Tralmng B

a0

—=— Test, target sequnce
M Test, predicted sequence

"ﬂHldden 1 node outputs &0

0 0 4Hidden 2 node outputs &0 80 100

Test error: 0.04

0.75 -

050

0.25

0.00 -

0.75 -

050

0.25

0.00

GRU network with 5 — 3 nodes!

(190 trainable weights!)

W -
0 20 O 60 80 10

0

—— Test, target sequnce
—— Test, predicted sequence

0 20 4Hidden 1 node outputs &0

100

0 2 J‘E?!-Iit:h:]ren 2 node outputs 60

100

0 20 20 €0

Test error: 0.03

100

The inverse problem is more difficult!

0.8
0.6
0.4
0.2

0.0 A

= Training, input sequence

0.3 1
06 4
04
02

0.0 A

- Training, target sequence

T
40 B0 a0 100

100 4

075 +

050 1

025

0.00 4

— Test, input sequence

40 &0 80 100

100 A

075 +

0.50 4

025

0,00 4

— Test, target sequence

10

& 1

06 A

04 1

02 A

0.0 1

10 1

& 1

0.6

04

02 1

00

104

05

00

LSTM network with 25 hidden nodes!

(2726 trainable weights!)

=== Training, input sequence

0 20 40 60 80 100

—=— Test, target sequnce
—=— Test, predicted sequence

40
Hidden node outputs

Test error: 0.07

Even with LSTMs it is very common to
use truncated BPTT!

IR R R R A R AR N A

- - - - .- L L .- L .- L

rrrrrrrr T

Forward pass, 4 time stepsh Forward pass, 4 time stepsh Forward pass, 4 time steps

Backward pass, 4 time steps Backward pass, 4 time steps Eackward pass, 4 time steps
i

Update 1 Update 2 Update 3

But typically with more than 4 times steps!!!

LSTM variant, The Gated Recurrent Unit (GRU)

Simpler version of the LSTM unit. Introduced 2014!
The core idea is the same, but it is simpler.
No memory and only two gates.

Update gate 2z = o(z,U” +hy 1 W?*+10,)
Resetgate r = o(x;U" + he W™ +b,)
Candidate output 7 = tanh(z;U" + (hy_1m)W" + bp,)

Output h, = (1-— z)ﬁ + zhy_1

|r.!_| 1

Bidirectional LSTMs

Putting two independent LSTMs together, one for the
forward sequence and one for the reverse sequence.

* *

(:}4—A' Al e A' ¢ A (s
(s0) A A ;I\ Lo A —>(s)

(%)

Useful when the context of the input is needed.

CNN LSTM architectures

These architectures combine the CNN for dealing with
Images and LSTM for the sequnce part. Examples:

Activity recognition: image sequence to classification

Image description: image to text sequence (caption)
Video description: video sequence to sequence (description)

Two “early” papers:

Show and Tell: A Neural Image Caption Generator (Link)

Long-term Recurrent Convolutional Networks for
Visual Recognition and Description (Link)

https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4389.pdf

Example of a caption generator:

<start> Giraffes standing <end>
Pretrained CNN Softmax Softmax Softmax Softmax

using ImageNet dataset

AN

—
—
—
—

. > > > 2
CNN [>] [»] & G155 — - 2|5
3 | i — —
E— Feature vector
Input Image at fc layer
(224x224x3) (Ix1x2048)
Weorn | (Wernp Wemp

t 1 t

<start> Giraffes other

A last example: Sampling from a character model

Task: given a sequence of characters, predict the next character!

One, two, thre?

My name i?

In this specific example the training sequence
IS the source code of (some earlier version) Tensorflow.
This is C++ code!

About 14 million characters in the sequence!

The model:

103 different characters
in the code

Skip layer connections

Two layers of 1024
LSTMs each

About 13 million
parameters

Since the output are probabilities for the 103 different
characters, we can sample from the model:

Five characters (A, B, C, D, E)

As a simple example [0.1, 0.3, 0.5, 0.1, 0.0]

The probability for ‘C’ is 50%, for ‘B’ 30% and so on.

The sampled character is then used as the
new input to the (trained) model.

Seed: “void “

void AddShapeMemoryTranspose(const Key& key, const AllocatorAttributes attr) {
VLOG(2) << "Instanding worker threads with dues to set cuSolveDDe gradient for:
def.label fills.push_back(TestMultipleWrites());
std::unique_ptr<thire> locks(0);
done(e->src(), cinfo->comp_device_context);
return Status::0K();

}

Status GetStatusResponse: :NewAppendable(string* stable_compress_ptr, class LoggingPand& BaseRendezvous,
const CreateSing& conten

" << variant->devices[0]->env_;

Seed: “printf(“

printf("%s",
strings::StrCat(true), ">");

}
if (!s.ok()) {

for (Node* n = 0; node : merge.nodes n& y_noded && (n->dst_node == train_num ==
CreateNodeDef (SIGEDMB, DT_FLOAT)) // Dsty in different device:
for (int i = ©; i < N; ++i)

(*(start_times[idx].ptr = nullptr) || (i == 1) ? Padding == Padding: :VALID:
(*is_log);

}

output_memory_usage = strings::StrCat(prefix, ", successfully.");

}

}
list_type_list.set_select(tf_stat.m_def)

Alternative approaches to Recurrent Networks

* CNN models
(Comparison article 1,
Comparison article 2)

* The Attention family of networks
(e.g. Transformer network).

Refl, Ref2
Example: “Talk to transformer”

https://arxiv.org/abs/1702.01923
https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://talktotransformer.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

