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Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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6Calibration - a regression task

You measure X and want E[X|Y] = Y. 

We’ll discuss how to perform this 
calibration using machine learning. 

One of the themes throughout this lecture will be 
mitigating simulation (prior) dependence.



7Calibration - a regression task

An example that you can have in mind is jet energy calibration.
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8What can go wrong?

Suppose you have some features x and you want to predict y.

One way to do this is to find an f that 
minimizes the mean squared error (MSE):

f = argming
P

i(g(xi)� yi)2

Then, f(x) = E[y|x].
Check this using the method we discussed yesterday!

Could this be a problem?

detector energy true energy



9What can go wrong?

f(x) = E[y|x] =
R
dy y p(y|x)

E[f(x)|y] =
R
dxdy0 y0 ptrain(y0|x)ptest(x|y)

this need not be y even if ptrain = ptest (!)  



10One solution: Numerical inversion

ATLAS and CMS use a trick to be prior-independent:

Numerical inversion instead of predicting y from 
x, predict x from y and then invert the function

For math details, see A. Cukierman and B. Nachman, NIMA 858 (2017) 1

… put another way:  
learn f:y → x and then for a given x, predict f-1(x)

by construction, f is independent of p(y) and thus 
f-1 also does not depend on p(y), as desired.



11Caveats about numerical inversion

This procedure is independent of the prior p(y) but 
may not close exactly, i.e. E[f-1(x)|y] may not be y.

For math details, see A. Cukierman and B. Nachman, NIMA 858 (2017) 1

…under mild assumptions, it does close for the mean absolute 
error, but usually has some non-closure for the MSE.

Also, the calibration procedure can distort the 
underlying distribution, i.e. if you start with a Gaussian, 

you almost never end up with exactly a Gaussian. 



12+ more features
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13Global sequential calibration

The current ATLAS approach to including more 
features is to repeat NI sequentially:

calorimeter, and MS (see Sec. 5.3 in Ref. [1] for the detailed list). This reduced dependence makes the
response more similar for quark and gluon jets, reduces the uncertainty due to jet fragmentation modeling
for a given jet type, and improves the jet energy resolution. The final step of the jet calibration procedure
applied only to data is an in-situ correction that accounts for the residual di�erence in R between data and
simulation. Complete details about the ATLAS jet calibration procedure can be found in Ref. [1, 2].

The focus of this note is on improving the method used for the MC-based residual calibration of the jet
pT on various jet quantities following an inclusive calibration, which in ATLAS is accomplished with the
GSC.

To perform a calibration in pT, one may want to learn a function that predicts ptrue
T given preco

T . While
straightforward, this method depends on the distribution of ptrue

T and thus renders the calibration dependent
on the event sample from which it is derived. Moreover, this method does not guarantee that f (x) ⇡ x
even for the sample used to derive the calibration. After applying the learned function it should be the
case that preco

T ⇡ hptrue
T |preco

T i, but f (x) = hpreco
T |ptrue

T = xi ⇡ x may not necessarily be satisfied. A
potential modification of the naive procedure is to enforce that the distribution of ptrue

T used in the learning
is uniform over a particular range. However, one can show that if f (x) is nonlinear or if the resolution
�(preco

T |ptrue
T ) is nonconstant, then even with this modification there can be large non-closures. Since both

of these properties are true of jet reconstruction in ATLAS, this simple fix does not solve the non-closure
problem.

An approach that can be used to ensure that the calibration is independent of the ptrue
T distribution is called

numerical inversion, which is the method used in ATLAS for the jet energy corrections. Instead of learning
to predict ptrue

T given preco
T , numerical inversion does exactly the opposite - by using f (x) directly, preco

T is
calibrated via preco

T 7! p̂reco
T ⌘ f �1(preco

T ). This procedure is inherently independent of the distribution of
ptrue

T and under a wide variety of circumstances [5], the response closes (R̂(x) ⌘ hp̂reco
T /ptrue

T |ptrue
T = xi ⇡ 1)

following the calibration.

Even though the overall response closes, f (x) may have a residual dependence on auxiliary information
available from the detector, such as the jet radiation pattern and the energy deposition pattern in the
detector. Let ✓ represent the available auxiliary information about a jet. Then, the function f can be
generalized as f✓ (x) ⌘ hpreco

T |ptrue
T = x, ✓i. For ✓ 2 R, the correction for these residual dependencies is

then given by preco
T 7! p̂reco

T = f �1
✓ (preco

T ). In practice, the distribution of ✓ is binned and the numerical
inversion is performed for di�erent functions in each bin of ✓. When ✓ 2 Rn, the calibration proceeds
with a sequential application of numerical inversion:

preco
T 7! p̂reco

T = f �1
✓n

⇣
· · · f �1

✓2

⇣
f �1
✓1

⇣
preco

T

⌘⌘
· · ·
⌘
. (1)

The sequential method removes all residual dependencies when f✓i (x) is independent of ✓ j,i, i.e. when
f✓ (x) is entirely determined by one feature at time. If there are such dependencies of f✓ (x) on more than
one feature ✓i, then there could be residual dependencies on some combination of the ✓i after the full
sequential correction.
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This works 
well when the 
jet response is 
independent 
of θi given θj.  



14Machine learning calibration

For reasons discussed earlier, we can’t include 
correlations by learning y given x and all the θ’s.

However, it would still be great to use machine 
learning to automatically and efficiently make 

use of correlated information.

We cannot use numerical inversion out-of-the-box 
because we now have a many-to-one function.



15Generalized numerical inversion

Since we are not (necessarily) interested in 
calibrating the θ’s, we can generalize NI as follows:

(1) Learn a function f to predict x given y and all the θ's.

(2) For every combination of θ, invert f. 

(3) Calibrate via x → fθ-1(x)

Step (2) is intractable, so replace it with another 
learning step: predict y given f(y,θ) and θ.



16GNI in action

Figure 1 shows the dependence of the response (following the inclusive energy calibration) on ntrack and
�Rtrack,avg. The response depends strongly on these two quantities, varying by about 20-30% across the
accessible range. The trends are also not uniform in jet pT - the response of lower pT jets shows a stronger
dependence on both ntrack and �Rtrack,avg.

In order to understand the performance provided by a simultaneous instead of a sequential approach,
approximations are derived for the calibration functions fntrack (x), f�Rtrack,avg (x), and fntrack,�Rtrack,avg (x),
and the sequential calibration f �1

�Rtrack,avg
( f �1

ntrack (preco
T )) is compared with the simultaneous calibration

f �1
ntrack,�Rtrack,avg

(preco
T ). The sequential calibration presented here di�ers in some details with the stand-

ard GSC used in ATLAS; a major di�erence is that the calibration presented here does an unbinned fit
to preco

T and the feature ✓ while the GSC does a binned fit which is then smoothed. To control for this
ability of the neural network to operate unbinned, the generalized numerical inversion approach is used
for both the one- and two-feature cases in order to study only the di�erences between the sequential and
the simultaneous calibrations. However, importantly the sequential approach demonstrated here does no
worse than the GSC in correcting for the residual dependence of the response.

The learned functions in the sequential calibration, L(ptrue
T , ntrack)/ptrue

T and L(ptrue
T ,�Rtrack,avg)/ptrue

T , are
presented in Fig. 2(a) and (d). As expected, Fig. 2(a) looks similar to Fig. 1(a), as the neural network has
learned to approximate the shape of the response with respect to ntrack (Fig. 2(d) is not expected to look
similar to Fig. 1(b), since the previously applied ntrack correction a�ects the dependence of the response
on �Rtrack,avg). The ratio of preco

T to L(ptrue
T ) (for the appropriate ✓, at the appropriate step of the sequential

calibration) is shown in (b) and (e), and the ratio is very close to 1, indicating the learning step is working
properly. The closure of the calibrations at each step of the sequence is shown in (c) and (f) of Fig. 2.
In both cases, the calibration closes, with an average calibrated response at unity, independent of the
features.

(a) (b)

Figure 1: The dependence of the response on (a) ntrack and (b) �Rtrack,avg in several bins of truth jet pT.

6

Consider two features:

average track pT-weighted 
distance from jet center



17GNI in action

R is the calibrated E[x|y] / y

(a) (b)

(c) (d)

Figure 4: The dependence of (a) dR̂
dntrack

on �Rtrack,avg and (b) dR̂
d�Rtrack,avg

on ntrack for: a calibration using a network
with ✓ = {ntrack} (circles); a calibration using a network with ✓ = {�Rtrack,avg} employed sequentially after correcting
for ntrack (squares); and a simultaneous calibration using a network with ✓ = {ntrack,�Rtrack,avg} (diamonds). Also,
the closure as a function of ptrue

T , highlighting the nonclosure due to this residual dependence in (c) a selection
intended to target gluon jets; and (d) a selection intended to target quark jets.

9

Only the simultaneous approach removes 
the full residual dependence!



18Further generalizations

Can also simultaneously 
calibrate a subset of the θ’s 
(e.g. jet energy and mass)

In many cases, it is 
desirable to calibrate the 
mode and not the mean 

since p(X|Y) is asymmetric.

S. Cheong, et al.,  JINST 15 (2020) P01030

Sequential Simultaneous

ATL-PHYS-PUB-2020-001

Can achieve this with modified loss function!



19Partial Conclusions for Regression

There are many more applications of regression in HEP, 
but calibration is a prototypical example.

When building a regression model, it is critical to be 
wary of prior dependence and to pick the loss 

function based on what you actually want to learn 
(mean/median/mode/IQR/etc.)
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21A hyper challenge for inference
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22A hyper challenge for inference
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23Example: Unfolding (Deconvolution)1 1
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i.e. remove detector distortions
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Measure thisWant this

p(meas. | true) = “response matrix” or “point spread function”

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

Example: Unfolding (Deconvolution)
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p(meas. | true) = “response matrix” or “point spread function”

Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

Example: Unfolding (Deconvolution)
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p(meas. | true) = “response matrix” or “point spread function”

Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

However: we have simulators that we can 
use to sample from p(meas. | true) 

→ Simulation-based (likelihood-free) inference

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

Example: Unfolding (Deconvolution)
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I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.



28Reweighting

I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

dataset 1: sampled from p(x) 
dataset 2: sampled from q(x)

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.



29

I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.

What if we don’t (and can’t easily) know q and p?

Reweighting

dataset 1: sampled from p(x) 
dataset 2: sampled from q(x)



30Classification for reweighting

Solution: train a neural network to 
distinguish the two datasets!

Fact: Neutral networks learn to 
approximate the likelihood ratio = q(x)/p(x)

This turns the problem of density estimation 
(hard) into a problem of classification (easy)

(see previous lecture!  Can you derive the monotonic relation?)



Image: Linear Collider Detector Project

31Classification for reweighting

e- e+

Particularly useful for particle physics, where collisions may 
produce a variable # of particles which are interchangeable*

*deep learning architecture: deep sets, Zaheer et al., NIPS 2017, 
Komiske, Metodiev, Thaler, JHEP 01 (2019) 121



32Classification for reweighting
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.
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simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

OmniFold is:
- Unbinned
- Maximum likelihood
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

OmniFold is:
- Unbinned
- Maximum likelihood
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

OmniFold is:
- Unbinned
- Maximum likelihood
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

OmniFold is:
- Unbinned
- Maximum likelihood
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features

50Results

extreme example: measured|true = true +X

X ⇠ N (µ,�)

If you control for X (=auxiliary feature), response is a delta-function!



51Partial Conclusions for Inference

One of the features of HEP that distinguishes it from 
other fields is the availability of a high-fidelity simulation 

(thanks to MCNet collaborators!)

These simulations are usually expensive and non-
differentiable.  A variety of ML methods can scaffold on 
top of our simulators to allow us to use all their physics 

to extract the most information from our data.
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53Simulation at the LHC

Spanning 10-20 m up to 1 m 
can take O(min/event)
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54Simulation at the LHC

This is only possible because of 
factorization (Markov Property): given the 

physics at one energy (~1/length) scale, the 
physics at the next one is independent of 

what came before.

Spanning 10-20 m up to 1 m 
can take O(min/event)
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Part I: Hard-scatter
L =� 1

4
Fµ⌫F

µ⌫ (1)

+ i ̄ /D (2)

+  iyij j�+ h.c. (3)

+ |Dµ�|2 � V (�) (4)

+ ??? (5)

55

We begin with a model 
and ME generators.

Standard is automated 
NLO or LO + matched

For many cases, this is 
slow but not limiting (yet)

************************************************************ 
*                                                          * 
*                     W E L C O M E to                     * 
*              M A D G R A P H 5 _ a M C @ N L O           * 
*                                                          * 
*                                                          * 
*                 *                       *                * 
*                   *        * *        *                  * 
*                     * * * * 5 * * * *                    * 
*                   *        * *        *                  * 
*                 *                       *                * 
*                                                          * 
************************************************************

A lot of interesting 
work on efficient phase 
space generation with 

ML - see the living 
review for links

https://iml-wg.github.io/HEPML-LivingReview/
https://iml-wg.github.io/HEPML-LivingReview/
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56

Fragmentation uses MCMC; 
standard is leading-log.

Not a limiting factor in 
terms of computing time.

Part II: Fragmentation
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Logo: Large

State-of-the-art for material 
interactions is Geant4.

Includes electromagnetic and 
hadronic physics with a variety of 

lists for increasing/decreasing 
accuracy (at the cost of time)

This accounts for O(1) fraction 
of all HEP competing resources! 

Part III: Material Interactions
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It is important to mention that after 
Geant4, each experiment has 
custom code for digitization

this can also be slow; but is usually 
faster than G4 and reconstruction 

Part IV: Digitization
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It is important to mention that after 
Geant4, each experiment has 
custom code for digitization

this can also be slow; but is usually 
faster than G4 and reconstruction 

Part IV: Digitization

N.B. calorimeter energy deposits 
factorize (sum of the deposits is 

the deposit of the sum) but 
digitization (w/ noise) does not!

calorimeter energy depositscalorimeter energy deposits

digitization
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State-of-the-art for material 
interactions is Geant 4.

Includes electromagnetic and 
hadronic physics with a variety of 

lists for increasing/decreasing 
accuracy (at the cost of time)

This accounts for O(1) fraction 
of all HEP computing resources! 

Simulations at the LHC
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Factorization

We are not trying to generate an entire 
event (O(1000) particles)) all at once - it 
would be very had to validate!  Instead, 
generate a single particle shower (before 
electronics) and appeal to combinatorics.  
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State-of-the-art for material 
interactions is Geant 4.

Includes electromagnetic and 
hadronic physics with a variety of 

lists for increasing/decreasing 
accuracy (at the cost of time)

This accounts for O(1) fraction 
of all HEP computing resources! 

Simulations at the LHCFactorization

We are not trying to generate an entire 
event (O(1000) particles)) all at once - it 
would be very had to validate!  Instead, 
generate a single particle shower (before 
electronics) and appeal to combinatorics.  



62

This work: attack the most important part: 
Calorimeter Simulation 

Goal: replace (or augment) simulation steps 
with a faster, powerful generator based on 

state-of-the-art machine learning techniques  
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Standard Model Production Cross Section Measurements Status: July 2017
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√
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~3 billion events at the HL-LHC

Why should you care?  
N.B. ALL jet substructure analyses in ATLAS are forced to 
use full simulation as current fast sim. is not good enough.
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N.B. ALL jet substructure analyses in ATLAS are forced to 
use full simulation as current fast sim. is not good enough.
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If we don’t do something, the HL-LHC 
won’t be possible.  If we do something 
now, we can save O($10 million/year).



65Now to the machine learning

A generator is nothing other than a function 
that maps random numbers to structure.

Our structure: calorimeter images



66Calorimeter images

η
z

φ

Grayscale images:
Pixel intensity = 

energy deposited

η
z

φ

η
z

φ



67Calorimeter images

η
z

φ

Challenge: multiple layers 
with non-uniform granularity 
and a causal relationship?

N.B. images are 
O(1000) dimensional



68One popular approach: GANs
Generative Adversarial Networks (GAN):  
A two-network game where one maps noise to images 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator[I. Goodfellow et al., NIPS 2014]



69Introducing CaloGAN

One image per calo. layer One network per particle type; 
input particle energy

ReLU to 
encourage sparsity

use layer i as 
input to layer i+1

Generator network

Single 
Image 
Gen.

Single 
Image 
Gen.

Single 
Image 
Gen.

NN to learn 
coefficients

NN to learn 
coefficients

[L. de Oliveira, M. Paganini, BPN, PRL 120 (2018) 042003]

[L. de Oliveira, M. Paganini, 
BPN, CSBS 1 (2017) 4]



70Building in physical constraints

help avoid 
‘mode collapse’

Discriminator network

Mode collapse: learns to generate 
one part of the distribution well, 

but leaves out other parts.

Encourage energy 
conservation

Single 
Image 

Network

Single 
Image 

Network

Single 
Image 

Network



71Results: average images
Full physics generator (Geant4)

CaloGAN



72Energy per layer

N.B. can always add these (and 
others) explicitly to the training

Pions deposit much less energy in 
the first layers; leave the calorimeter 

with significant energy  



73Warning: challenge with GANs

Unlike for classifiers, it is 
not easy to figure out 

which GAN is a good GAN 
- trying to learn a O(1000) 
generative model and not 
a single likelihood ratio!

…this is a place where 
science applications can 
make a big impact on ML. First layer energy [GeV]



no “mode 
collapse”

not 
memorizing

74One look at “overtraining”

# 
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.]
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.u
.]

# 
sh
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er

s 
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.u
.]

# 
sh
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s 
[a

.u
.]

Euclidean distance

Euclidean distanceEuclidean distance

Euclidean distance



75Timing

Generation Method Hardware Batch Size milliseconds/shower

GEANT4 CPU N/A 1772

1 13.1

10 5.11

128 2.19
CPU

1024 2.03

1 14.5

4 3.68

128 0.021

512 0.014

CALOGAN

GPU

1024 0.012

Table 2: Total expected time (in milliseconds) required to generate a single shower under

various algorithm-hardware combinations.

21

NVIDIA K80

Intel Xeon 
E5-2670

(clearly these numbers will change as both technologies 
improve - this is simply meant to be qualitative and motivating!)



Beyond our 
training sample!

76Extrapolating

If the physics changes, 
no expectation that the 
GAN will be accurate.



77Partial Conclusions for Generation

Generative models are becoming more powerful & popular  
(not just GANs, but other models like Variational Autoencoders and Normalizing Flows)

Our applications are often more challenging than industry 
because our data are less “structured” than natural images 
and we also have a strong requirement of quantitive and not 

just qualitative quality (e.g. jets versus celebrities)

…you will hear more about GANs in HEP tomorrow!



78Data analysis in HEP + Machine Learning

Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

Parameter 
estimation / 
unfolding

Data curation

Anomaly 
detection

calibration 
clustering 
tracking 

noise mitigation 
particle identification 

…

Fast 
simulation

Online 
processing & 
quality control

Anomaly 
detection



79Uncertainties & simulation-based inference

“But what are the uncertainties on the NN”?
- question asked by every reviewer



80Uncertainties & simulation-based inference

“But what are the uncertainties on the NN”?
- question asked by every reviewer

Let’s consider this question in the context of 
a search for new particles in collision events.

this is representative for many 
analyses at the LHC, for example



81Setup
1. Train a classifier (in sim.) 
for signal vs. background.  

2. Define a control region 
(CR) and a signal region 
(SR) using (1). 

3. Check / modify 
simulation in CR. 

4. Compare data and 
simulation in SR.  

Significantly 
different? go to 
Stockholm : publish 
limits.
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D
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ATLAS Collaboration, 2004.01678



82Uncertainties for a NN-based analysis

Precision / Optimality

Accuracy / Bias

Bad use of our data, time, money, etc. but not wrong.



83Uncertainties for a NN-based analysis

Accuracy / Bias

Precision / Optimality: NN(x) 6= ptrue(x|S+B)
ptrue(x|B)

Optimal by Neyman-Pearson

Note that this is not p(x|S) / p(x|B), however the 
two are monotonically related to each other.



84Uncertainties for a NN-based analysis

Precision / Optimality: NN(x) 6= ptrue(x|S+B)
ptrue(x|B)

Accuracy / Bias: pprediction(NN) 6= ptrue(NN).

The distribution of the (corrected) sim. is not correct.



85Uncertainties for a NN-based analysis

BP
N

, 1
90

9.
03

08
1~ aleatoric ~ epistemic



86How to estimate precision stat. uncerts.

You can always accomplish this by 
bootstrapping: making pseudo-datasets 

from resampling and then retraining.

It is important to fix the NN 
initialization so that you are not also 

testing your sensitivity to that.

This can be painful because it 
requires retraining many NNs.

Maybe can accomplish with one Bayesian NN?  See e.g. S. Bollweg, et al., 
SciPost Phys. 8, 006 (2020), 1904.10004 for a particle physics example.



87How to estimate precision syst. uncerts.

As with all systematic uncertainties, 
this is hard to quantify.

One component is due to the 
modeling of p(x) - more on this later.

Testing the flexibility of the network requires 
checking the sensitivity to the architecture 

(#layers, nodes/layer, etc.), the initialization, the 
training procedure (#epochs, learning rate, etc.)



88How to estimate bias stat. uncerts.

Can be estimated via 
bootstrapping.  Less painful here 

because the NN’s are fixed.

N.B. it may be possible to design a network that is designed to minimize uncertainty at 
inference.  This does not work in all cases, but early studies in particle physics seem 

promising: S. Wunsch et al., 2003.07186, P. da Castro et al., CPC 244 (2019) 170, 1806.04743



89How to estimate bias syst. uncerts.

This is the trickiest one…

…because we need the 
uncertainty on the modeling of x 
and x can be high-dimensional!

In many cases, the uncertainties factorize, e.g. the 
uncertainty on two photon energies can be 

decomposed into the uncertainty on each photon.

However, in many cases, we simply do not know the full 
uncertainty model (= nuisance parameters and their distribution)



90High-dimensional Bias Uncertainties

One word of caution: current paradigm for uncertainties 
may be too naive for high-dimensional analysis! 

e.g. for some uncertainties, we often compare two 
different models - one nuisance parameter.

(truly end-to-end)

How can we even see how sensitive we 
are to high-dimensional effects?



91High-dimensional Bias Uncertainties

One word of caution: current paradigm for uncertainties 
may be too naive for high-dimensional analysis! 

e.g. for some uncertainties, we often compare two 
different models - one nuisance parameter.

(truly end-to-end)

How can we even see how sensitive we 
are to high-dimensional effects?

Answer: borrow tools from AI Safety



92AI Safety

K. Eykholt et. al, 1707.08945

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

There is a vast literature 
on how easy it is to 

“attack” a NN.
They want to know: how subtle 

can an attack be and still 
significantly impact the output.

We know (hope?!) 
that nature is not evil, 
but these tools can 
help us probe the 
high-dimensional 

sensitivity of our NNs.
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represents a worst-case scenario only for a specific class
of mismodeling. As it turns out, even this restricted form
of attack can have surprisingly large e↵ects; we leave the
assessment of sensitivity to more general attack models
to future work.

The adversarial network is trained by minimizing sep-
arate loss functions for signal and background defined
by:

Lsig = log(1� f(g(J))), (2)

Lbg = �cls(f(J)� f(g(J)))2

+
X

i

�(i)
obs(O

(i)(J)�O
(i)(g(J))2 . (3)

Lsig is the categorical crossentropy, which impels g to
modify signal jets so as to be labeled as background by f .
The first term of Lbg minimizes changes between the tar-
get network’s response to the jet before and after the ad-
versarial perturbation. The functions O(i)(J) : R3N

! R
represent any features of interest to be preserved. The

tunable hyperparameters �cls,�
(i)
obs � 0 encode the ad-

versary’s preference to preserve the target network re-
sponse and observable features, respectively, for back-
ground events.

In our experiments, g is a fully-connected network with
4 hidden layers, each with 300 units and ReLU activation.
The penultimate layer has 64⇥3 units, with tanh activa-
tion. Analogously to the sign function in Eq. 1 and the
bounding parameters ✏ in Sec. III A, the outputs of the fi-
nal layer are bounded by applying a tanh activation, and
the axes corresponding to pT, ⌘, and � are scaled by pa-
rameters ⇢pT , ⇢⌘, and ⇢�, respectively. The output of this
layer represents a di↵erential change in the input jet, �J .
The final layer is essentially a residual skip-connection
layer computing J + �J as described in Sec. IIIA.

Separate adversaries are trained for each of the HL
and LL benchmark networks. In all cases, the bounding
magnitude of the constituent perturbations are fixed at
~⇢ = 0.02, which is slightly larger than the scale of pertur-
bations for the FGSM. Two observable constraints are in-
cluded in Lbg: the jet mass and pT. The parameters �cls

and �obs are tuned by training until either convergence
or until certain validation criteria are violated. The val-
idation criteria are met when the Kolmogorov-Smirno↵
(KS) test statistic between perturbed and unperturbed
background distributions are below heuristically-defined
thresholds of 0.04 for jet mass and pT, and 0.02 for clas-
sifier response. In practice, these thresholds would be
set by the data statistics as well as the size of known
experimental uncertainties. A more realistic test in prac-
tice is to consider the �2 agreement between validation
histograms evaluated in an unblinded control region, as
illustrated in Fig. 1 for the case of the LL network.

FIG. 1: Illustration of typical validation procedure.
Pseudodata (black points) are sampled from the BG

distribution with the adversarial perturbation applied; solid
histograms show the unperturbed BG model. Top: The
unshaded control region in this case is defined where the

signal e�ciency is expected to be less than 10%; the shaded
region would typically be blinded when designing an

experiment. The green vertical line indicates the expected
optimal signal region. Middle, Bottom: The jet pT and mass

distributions for events in the control region. Good
agreement is observed between the “observed” pseudodata

and the expected background model in the control region for
all three observables. The �2/ndf values are 14.7/14,

25.0/40, and 37.8/40 repsectively.

IV. RESULTS

To quantify the e↵ect of these adversarial attacks, we
consider a simplified example of a typical experimental
analysis in HEP. If S and B are the predicted number of
signal and background events, respectively, then in the
asymptotic limit (S +B � 1, S ⌧ B [30]), the expected
statistical significance of an observation with respect to
the background-only hypothesis is S/

p
B, in units of

standard deviations. After considering only events that
pass a classifier threshold, the relative change in the sig-
nificance is ✏S/

p
✏B , where ✏S is the true positive rate

(signal e�ciency) and ✏B is the false positive rate (back-
ground e�ciency). A classifier is only useful for improv-
ing the sensitivity of a search if this relative discovery

significance exceeds unity. The relative discovery signif-

J = collision event (in all of its high-dimensional glory)

f = fixed classifier for signal vs. background

g is a learned NN that maps J to J + 𝛿J.

O(J) are observables that will be validated in the CR.
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ing is interruped early on, the susceptibility to the ad-
versarial attack is reduced, and tends to increase with
additional training. In particular, when the LL network
is trained only to the same level of performance as the
HL network, it is nearly impervious to the adversarial
attack. We hypothesize that the additional information
the LL network uses in order to outperform the HL net-
work is more sensitive to small-scale perturbations than
the theoretically-motivated HL observables. Although
this e↵ect seems to have spurious counterexamples due
to random network initialization, the trend may suggest
that undertraining very sensitive HDLL networks could
be be a useful regularization technique to build in analy-
sis robustness, while still providing a performance boost
relative to HL architectures.

FIG. 4: E↵ect of adversarial mismodeling on discovery
significance, for high-level and low-level feature networks.

The vertical gray line indicates the expected optimal
selection threshold, which di↵ers by about 25% from the

“true” significance when taking the adversarial perturbation
into account. The HL network’s expected sensitivity di↵ers
by about 15% from the true value. While the fully-trained
low-level network is expected to perform better than the
high-level network, it is also more strongly a↵ected by an
adversarial attack. However, when the LL network is

deliberately undertrained, its susceptibility is reduced. Also
shown is the e↵ect induced by randomly perturbing

constituents by a uniform distribution in the range [�⇢,+⇢].

Representative HL features and the classifier distribu-
tions for the adversarial attack are presented in Fig. 5.
Even though both signal and background jets are sub-
jected to the same adversary, the background distribu-
tions are nearly identical before and after the perturba-
tion. In contrast, the classifier response and mass dis-
tributions are noticeably distorted for the signal. This
allows the systematic mismodeling induced by the ad-
versary to go undetected in typical experimental condi-
tions, as shown in Fig. 1. The green line delineating
the signal region corresponds to the maximum discovery
significance expected based on the simulated signal and
background models. The shaded region, defined as the
region in which expected signal e�ciency exceeds 10%,
is taken to be blinded during experimental design and
validation phase. ‘Observations’ are samples from the
perturbed simulation and the ‘Expected’ prediction is
the unperturbed simulation. The jet pT and mass dis-

tributions in the validation region agree well between the
Observed and Expected values to within statistical un-
certainty. Despite this apparent agreement, due to the
adversary’s e↵ect on jets in the signal region, the dis-
covery sensitivity for a potential signal at the predicted
optimal working point is reduced by about 25% as shown
in Fig. 4.

FIG. 5: Comparison of the e↵ect the adversarial network
perturbations on the LL and HL classifier response, as well

as various jet observables.

94High-dimensional Uncertainty

“worst-case uncertainty”
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95How to reduce precision stat. uncerts.

Train with more events!



96How to reduce precision stat. uncerts.

Train with more events!

…maybe use NN’s to help with that



97How to reduce precision syst. uncerts.

Might be possible to reduce uncertainties or at 
least alleviate analysis complexity by making your 
NN independent of known nuisance parameters*.

*see G. Louppe, et al., NIPS 2017, 1611.01046 for particle physics and many papers since.

…might also be better to explicitly depend on the 
nuisance parameters and profile them in data.



98How to get around high-D bias uncerts?

Work hard to understand the true nuisance 
parameters in the hypervariate parameter space.

In my opinion, this is THE biggest 
challenge with deploying NN-

based analyses … solving it will 
require hard physics work.



99How to get around high-D bias uncerts?

Work hard to understand the true nuisance 
parameters in the hypervariate parameter space.

Don’t use simulation!
(not always possible and of 

course, still has assumptions…)
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Figure 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
mJJ ' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with mJ A ' 400 GeV and
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100What is the problem?

Why can’t I just pay some physicists to label events  
and then train a neural network using those labels?

Answer: this is not cats-versus-dogs … thanks to quantum 
mechanics it is not possible to know what happened.

Image credit: pixabay.com

http://pixabay.com


101What is the problem?

The data are unlabeled and in the best case, come to us  
as mixtures of two classes (“signal” and “background”).

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ���	
� �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ���	
� �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

(we don’t get to observe the color of the circles)
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51

Weak supervision: 
Classification Without Labels

Can we learn 
without any label 

information?
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
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Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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=
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f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since
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LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ���	
� �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ���	
� �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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132…and when there is a signal?
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Figure 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
mJJ ' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with mJ A ' 400 GeV and

– 15 –
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134Collision data results NewNew

ATLAS Collaboration, 2005.02983 
Analysis Team: A. Cukeriman, BPN

First round, keep it simple: feature space is 2D (jet masses)
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ATLAS Collaboration, 2005.02983 
Analysis Team: A. Cukeriman, BPN
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Deep learning + weak 
supervision + anomaly 

detection leading to 
real physics output!
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144Anomaly detection future

Rapidly developing 
area - LHC Olympics 
2020 to help facilitate!
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A. Andreassen. BPN, D. Shih, PRD 101 (2020) 095004
BPN, D. Shih, PRD 101 (2020) 075042
J. Collins, K. Howe, BPN, PRL 121 (2018) 241803

M. Farina, Y. Nakai, D. Shih, PRD 101 (2020) 075021

B. Dillon, D. Faroughy, J. Kamenik, PRD 100 (2019) 056002
T. Heimel, G. Kasieczka, T. Plehn, J. Thompson, SciPost Phys. 6 (2019) 030

G. Kasieczka. BPN, D. Shih
https://lhco2020.github.io/homepage/

We need your 
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Deep learning has a great 
potential to enhance, 

accelerate, and 
empower HEP analyses.

The full phase space of our experiments is now 
explorable and deep learning will allow us this 

information to discover fundamental properties of nature!

145Conclusions and outlook
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Disclaimer: I have given you a 

biased perspective of new 
developments - there is a 

growing community within HEP!
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147GNI in action
(a) (b)

(c) (d)

Figure 4: The dependence of (a) dR̂
dntrack

on �Rtrack,avg and (b) dR̂
d�Rtrack,avg

on ntrack for: a calibration using a network
with ✓ = {ntrack} (circles); a calibration using a network with ✓ = {�Rtrack,avg} employed sequentially after correcting
for ntrack (squares); and a simultaneous calibration using a network with ✓ = {ntrack,�Rtrack,avg} (diamonds). Also,
the closure as a function of ptrue

T , highlighting the nonclosure due to this residual dependence in (c) a selection
intended to target gluon jets; and (d) a selection intended to target quark jets.

9

Slightly better closure for the simultaneous calibration.



148Weak/unsupervised learning for anomalies

Need to be careful about testing/training on the same data.

Data Partitioning Classifier Training Event Selection & Merging
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Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single mJJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in mJJ . The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of

– 13 –



149CWoLa hunting vs. Full Supervision
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Figure 11. Truth-label ROC curves for taggers trained using CWoLa with varying number of signal
events, compared to those for a dedicated tagger trained on pure signal and background samples
(dashed black) and one trained to discriminate W and Z jets from QCD (dot-dashed black). The
CWoLa examples have B = 81341 in the signal region and S = (230, 352, 472, 697, 927).

the cuts. This illustrates that CWoLa hunting may find unexpected signals which are not

targeted by existing dedicated searches.

One final remark is about how one would use CWoLa hunting to set limits. In the form

described above, the CWoLa hunting approach is designed to find new signals in data without

any model assumptions. However, it is also possible to recast the lack of an excess as setting

limits on particular BSM models. Given a simulated sample for a particular model, it would

be possible to set limits on this model by mixing the simulation with the data and training

a series of classifiers as above and running toy experiments, re-estimating the background

each time. This is similar to the usual bump hunt, except that there is more computational

overhead because the background distribution is determined in part by the neural networks,

and the distribution in expected signal e�ciencies cannot be determined except by these toy

experiments.

5 Conclusions

We have presented a new anomaly detection technique for finding BSM physics signals directly

from data. The central assumption is that the signal is localized as a bump in one variable in

which the background is smooth, and that other features are available for additional discrim-

ination power. This allows us to identify potential signal-enhanced and signal-depleted event

samples with almost identical background characteristics on which a classifier can be trained

using the Classification Without Labels approach. In the case that a distinctive signal is

present, the trained classifier output becomes an e↵ective discriminant between signal events

– 18 –
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If you know what you are looking for, you should look for it.  If 
you don’t know, then CWoLa hunting may be able to catch it!


