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A typical LHC analysis
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Figure 2: The observed and expected (pre-fit) inclusive four-lepton invariant mass distributions for the selected
Higgs boson candidates, shown for an integrated luminosity of 139 fb�1 and at

p
s = 13 TeV. The uncertainty in the

prediction is shown by the hatched band, calculated as described in Section 8.
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The HEP trinity

Theory

Fundamental Lagrangian

• Perturbative QFT

Standard Model vs. new physics

• Matrix elements, loop integrals

Experiment

Complex detector

• ATLAS, CMS, LHCb, ALICE, ...

Reconstruction of individual events

• Big data: jet images, tracks, ...

Precision simulations

First-principle Monte Carlo generators

• Simulation of parton/particle-level events

• Herwig, Pythia, Sherpa, Madgraph,
...

Detector simulation

• Geant4, PGS, Delphes, ...

⇒ Unweighted event samples
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Monte Carlo simulation of proton collision

Hard (perturbative) scattering process  
‣ N(N)LO QCD + EW 

Hadronization/fragmentation/ 
hadron decays

PDFs

p p
QED Parton shower 

Theoretical Predictions for Hadron Colliders

Soft underleying event

QCD Parton Shower  

A sherpa author & Jonas M. Lindert
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Neural networks for precision simulations

Problems in MC simulations
• High-dimensional phase space

• Low unweighting efficiency

• CPU time increase per order in precision ∼ ×100

• Slow detector simulations

Solution with neural networks
• Flexible parametrisation

• Interpolation properties

• Fast evaluation

• Multiple generative models: GAN, VAE, normalizing flow
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How to use ML for event generation

Estimate matrix element
Optimize phase space

mapping
Learn distribution of

generated events

→ Regression → Normalizing flow → GAN, VAE

Figure 8: Comparison of a single neural network (left) vs. our ensemble approach (right)
in estimating the differential NLO/LO k-factors against y, where y is the minimum yij as
ordered by pT . Data is normalised to the maximum Njet bin value. Uncertainty bands
denote the s.d. calculated over 20 trained models (red and green) and Monte Carlo error
on the Njet result (blue).

cantly ill-approximated. While we do not necessarily see a dramatic improvement in using
the ensemble approach, given that the additional training time required is negligible in
comparison to the data generation, we still see it as a viable and beneficial method to use
for k-factor approximation. It should be noted that similar reasoning as given in Equations
(3.4 - 3.10) can again be applied to the k-factor and per-bin uncertainty differences between
the single and ensemble network approaches at NLO.

Finally, in the case of 5-jets we demonstrate our methodology as it may be used in
practice. In Figure 9 we show how one may predict on a set of points with no known
Njet results for testing, while understanding the associated neural network errors. From
these plots we clearly see that the ensemble method has associated errors only at the level

– 18 –

Badger & Bullock [2002.07516]

NF : x → y

pY (y) = pX (x) det
∂y

∂x
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Generative Adversarial Networks

• Training data: {xT }, Generated data: {xG}
• Discriminator distinguishes {xT }, {xG} [D(xT ) → 1, D(xG ) → 0]

• Generator fools discriminator [D(xG ) → 1]

⇒ New statistically independent samples

max
G

min
D

[〈
− log D(x)

〉
x∼PT

+
〈
− log(1− D(x))

〉
x∼PG

]
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Training the Discriminator

Discriminator loss

0 = gen 0.2 0.4 0.6 0.8 1 = true
D(x)

0

1

2

3

4

5

L
D

true DS generated DS

Minimize LD =
〈
− log D(x)

〉
x∼PT

+
〈
− log(1− D(x))

〉
x∼PG
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Training the Generator

Generator loss

0 = gen 0.2 0.4 0.6 0.8 1 = true
D(x)

0

1
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3

4

5

L
G

improved standard

Maximize LG =
〈
− log(1− D(x))

〉
x∼PG
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Why GANs? Features, problems and solutions

+ Generate better samples than VAE

+ Large community working on GANs

Unstable Training

• Discriminator too strong → vanishing gradient

• Large gradient → no convergence

Solutions

• Modified training objective:
• Improved generator loss
• Wasserstein GAN
• Least square GAN
• MMD-GAN
• . . .

• Check input dimensions!

• Regularization of the discriminator, eg. gradient penalty, weight clipping
• Other possibilities to improve the training:

• Use of symmetries
• Whitening of data
• Feature augmentation
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Why GANs? Features, problems and solutions
+ Generate better samples than VAE

+ Large community working on GANs

Unstable Training

• Discriminator too strong → vanishing gradient

• Large gradient → no convergence
Which Training Methods for GANs do actually Converge?

pD = �0 p✓ = �✓

D (x)

x

y

(a) t = t0

pD = �0 p✓ = �✓

D (x)

x

y

(b) t = t1

Figure 1. Visualization of the counterexample showing that gra-
dient descent based GAN optimization is not always convergent:
(a) In the beginning, the discriminator pushes the generator towards
the true data distribution and the discriminator’s slope increases.
(b) When the generator reaches the target distribution, the slope of
the discriminator is largest, pushing the generator away from the
target distribution. This results in oscillatory training dynamics
that never converge.

than 1, the training algorithm will converge to (✓⇤,  ⇤) with
linear rate O(|�max|k) where �max is the eigenvalue of
F 0(✓⇤,  ⇤) with the biggest absolute value. If all eigenval-
ues of F 0(✓⇤,  ⇤) are on the unit circle, the algorithm can
be convergent, divergent or neither, but if it is convergent
it will generally converge with a sublinear rate. A similar
result (Khalil, 1996; Nagarajan & Kolter, 2017) also holds
for the (idealized) continuous system

✓
✓̇(t)

 ̇(t)

◆
=

✓
�r L(✓,  )
r✓L(✓,  )

◆
(3)

which corresponds to training the GAN with infinitely small
learning rate: if all eigenvalues of the Jacobian v0(✓⇤,  ⇤)
at a stationary point (✓⇤,  ⇤) have negative real-part, the
continuous system converges locally to (✓⇤,  ⇤) with lin-
ear convergence rate. On the other hand, if v0(✓⇤,  ⇤) has
eigenvalues with positive real-part, the continuous system
is not locally convergent. If all eigenvalues have zero real-
part, it can be convergent, divergent or neither, but if it is
convergent, it will generally converge with a sublinear rate.

For simultaneous gradient descent linear convergence can
be achieved if and only if all eigenvalues of the Jacobian
of the gradient vector field v(✓,  ) have negative real part
(Mescheder et al., 2017). This situation was also considered
by Nagarajan & Kolter (2017) who examined the asymptotic
case of step sizes h that go to 0 and proved local convergence
for absolutely continuous generator and data distributions
under certain regularity assumptions.

2.2. The Dirac-GAN

Simple experiments, simple theorems are the building
blocks that help us understand more complicated systems.

Ali Rahimi - Test of Time Award speech, NIPS 2017

In this section, we describe a simple yet prototypical coun-
terexample which shows that in the general case unregular-
ized GAN training is neither locally nor globally convergent.

Definition 2.1. The Dirac-GAN consists of a (univariate)
generator distribution p✓ = �✓ and a linear discriminator
D (x) =  · x. The true data distribution pD is given by a
Dirac-distribution concentrated at 0.

Note that for the Dirac-GAN, both the generator and the
discriminator have exactly one parameter. This situation
is visualized in Figure 1. In this setup, the GAN training
objective (1) is given by

L(✓,  ) = f( ✓) + f(0) (4)

While using linear discriminators might appear restrictive,
the class of linear discriminators is in fact as powerful as
the class of all real-valued functions for this example: when
we use f(t) = � log(1 + exp(�t)) and we take the supre-
mum over  in (4), we obtain (up to scalar and additive
constants) the Jensen-Shannon divergence between p✓ and
pD. The same holds true for the Wasserstein-divergence,
when we use f(t) = t and put a Lipschitz constraint on the
discriminator (see Section 3.1).

We show that the training dynamics of GANs do not con-
verge in this simple setup.

Lemma 2.2. The unique equilibrium point of the training
objective in (4) is given by ✓ =  = 0. Moreover, the
Jacobian of the gradient vector field at the equilibrium point
has the two eigenvalues ±f 0(0) i which are both on the
imaginary axis.

We now take a closer look at the training dynamics produced
by various algorithms for training the Dirac-GAN. First, we
consider the (idealized) continuous system in (3): while
Lemma 2.2 shows that the continuous system is generally
not linearly convergent to the equilibrium point, it could
in principle converge with a sublinear convergence rate.
However, this is not the case as the next lemma shows:

Lemma 2.3. The integral curves of the gradient vector field
v(✓,  ) do not converge to the Nash-equilibrium. More
specifically, every integral curve (✓(t),  (t)) of the gradient
vector field v(✓,  ) satisfies ✓(t)2 +  (t)2 = const for all
t 2 [0,1).

Note that our results do not contradict the results of Nagara-
jan & Kolter (2017) and Heusel et al. (2017): our example
violates Assumption IV in Nagarajan & Kolter (2017) that
the support of the generator distribution is equal to the sup-
port of the true data distribution near the equilibrium. It
also violates the assumption2 in Heusel et al. (2017) that
the optimal discriminator parameter vector is a continuous
function of the current generator parameters. In fact, unless

2This assumption is usually even violated by Wasserstein-
GANs, as the optimal discriminator parameter vector as a function
of the current generator parameters can have discontinuities near
the Nash-equilibrium. See Section 3.1 for details.

[1801.04406]

Adding gradient penalty

φ(x) = log
D(x)

1− D(x)
⇒

∂φ

∂x
=

1

D(x)

1

1− D(x)

∂D

∂x

LD → LD + λD
〈

(1− D(x))2 |∇φ|2
〉
x∼PT

+ λD
〈
D(x)2 |∇φ|2

〉
x∼PG

,
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Neural Networks for Event Generation?

• Input: random numbers, fixed parameters, eg. external masses

• Output: unweighted events

• Training data:
• unweighted MC events or real data
• can include parton showers, hadronization and detector effects

Generator{r}, {m} {xG} {xT } MC Data

DiscriminatorMMD2

LG LD
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Top-Pair Production

GAN events for the 2→ 6 particle production process

pp → tt̄ → (bW−) (b̄W+)→ (bq1q̄
′
1) (b̄q2q̄

′
2) .

t

t

W

W

Challenges: 16-dimensional phase-space, 4 resonances,

phase-space boundaries, tails

Remarks: fix masses of final state particles, no momentum conservation
→ generate 18 dim output
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Momentum Distributions
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→ flat distributions easy to learn!

→ Deviations scale with statistic uncertainty in the tail
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Momentum Conservation by the Network
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• generator learns to conserve momentum at a 1% level

• use correlations to evaluate performance
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2-dimensional Correlations
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Invariant Mass Peaks

What about the resonances?
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Invariant Mass Peaks

Simple GAN setup:
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Challenge: resolve the mass peaks

Standard solution: phase-space remapping∫
ds

F (s)

(s −m2)2 + m2Γ2
=

1

mΓ

∫
dz F (s) with z = arctan

s −m2

mΓ
.

However: knowledge of m and Γ needed
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Invariant Mass Peaks

Can we learn it simply from data?
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Invariant Mass Peaks
Including the MMD Loss

MMD2(PT ,PG ) =
〈
k(x , x ′)

〉
x,x′∼PT

+
〈
k(y , y ′)

〉
y,y′∼PG

− 2
〈
k(x , y)

〉
x∼PT ,y∼PG

MMD2(PT ,PG ) = 0⇔ PT = PG
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No MMD

• free kernel choice → stable results

• no knowledge of m and Γ needed
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First conclusion

• GAN is able to reproduce the full phase space structure of a realistic LHC process

• Flat distributions reproduced at arbitrary precison, limited only by statistics

• MMD loss to describe rich peaking resonances

• Possible to generate events from actual LHC event samples
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Going further

Can we generate the difference of two distributions?
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How to GAN event subtraction

Idea: sample based subtraction of distributions

1 Consistent multidimensional difference between two distributions

2 Beat bin-induced statistical uncertainty [interpolation of distributions]

∆B−S =
√

n2
BNB + n2

SNS > max(∆B ,∆S )
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Physics case

• Theory uncertainties have become a limiting factor for LHC analyses

→ Need for better accuracy

NLO in a nutshell

Z

e+

e−

(a) Born

Z

e+

e−

(b) Virtual

Z

e+

e−

g

(c) Real

σNLO =

∫
dΦB(B + V ) +

∫
dΦRR
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Subtracting divergencies

• Virtual and real corrections diverge individually (eg. IR divergence)

• Sum of divergent contributions is finite

→ Introduce dipoles Di to cancel divergencies

Dipole subtraction

σNLO =

∫
dΦB(B + V +

∑
i

dΦR|BDi ) +

∫
dΦR(R −

∑
i

Di )

• Analytic solution only possible for simple processes
• Numeric subtraction of samples:
→ large statistic uncertainties
→ limits efficiency

• More applications:
- Soft-collinear subtraction, multi-jet merging, on-shell subtraction
- Background subtraction [4-body decays→preserves correlations]
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From a standard GAN ...
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... to a subtraction GAN

label vector c =

(
cS

cB−S

) cB−S cS

Data B 1 1
Data S 0 1

B-S 1 0
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Introduction tt̄ production Event subtraction Unfolding

Building the loss function

• Standard GAN loss for each discriminator

• Differentiable function to count events of one type

f (c) = e−α(max(c)2−1)2β
∈ [0, 1] for 0 ≤ ci ≤ 1 .

• Reward clear class assignment

L
(class)
G =

1−
1

b

∑
c∈batch

f (c)

2

• Fix normalization

L
(norm)
Gi

=

(∑
c∈Ci f (c)∑
c∈CB f (c)

−
σi

σ0

)2
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Toy example

PB(x) =
1

x
+ 0.1

PS (x) =
1

x

PB−S (x) = 0.1
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x
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(B − S)GAN

(B − S)Truth ± 1σ
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Back to the original problem

Z

e+

e−

g

• Subtract the Catany Seymour Dipole from the real emission term

• For proof of concept we use a slightly modifed Catany Seymour kernel → increase
difference

• Training
• 105 samples per distribution
• 4-vector representation of Z and g
• Eg > 5 GeV
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Results
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Include addition

PB(x) =
1

x
+ 0.1

PS (x) =
1

x

PA(x) =
5

π

10

102 + (x − 90)2

CB−S CS CA
Data B 1 1 0
Data S 0 1 0
Data A 0 0 1

B-S+A 1 0 1
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Allowing for more datasets

SciPost Physics Submission

{xG, c}G

{r}

LG

DB

{xB}

LDB

c 2
MS

C
i

DS1

{xS1
}

LDS1

c
2

C 1

DS2

{xS2
}

LDS2

c 2 C2

DAN

{xAN
}

LDAN

c
2

C M
+

N

Figure 4: Structure of our general subtraction and addition GAN. The input {r} describes
a batch of random numbers and {x} the true input data or generated batches. The label c
encodes the category of the generated events. Blue arrows indicate the generator training,
red arrows the discriminators training.

2.3 General setup

Finally, we note that our network setup is not limited to three classes. We can generalize it
to a base distribution, M subtraction datasets, and N added datasets. The corresponding
category assignment, generalized from Tab.1, is given in Tab. 2 and encoded in an enlarged

C0 C1 C2 · · · CM CM+1 · · · CM+N

Data B 1 1 1 · · · 1 0 · · · 0
Data S1 0 1 0 · · · 0 0 · · · 0
Data S2 0 0 1 0 0 · · · 0
...

...
...

. . .
...

...
Data SM 0 0 0 1 0 · · · 0
Data A1 0 0 0 · · · 0 1 0
...

...
...

...
. . .

...
. . .

Data AN 0 0 0 · · · 0 0 1

Combination 1 0 0 · · · 0 1 · · · 1

Table 2: Details for the category selection in the general case.

8

Anja Butter MCnet Machine Learning School 2020 31 / 44



Introduction tt̄ production Event subtraction Unfolding

Conclusion

• Build on GAN setup: learns underlying distributions

• More complex: subtraction GAN

→ learn difference of two distributions

• Applications: subtract real-emission corrections to improve computation efficiency

• Background subtraction

• New tool for our ML toolbox
→ other use cases?
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Unfolding detector effects
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Setup

pp → ZW± → (`−`+) (jj) (1)

• 300k events using MadGraph+Pythia and Delphes, no ISR
• event selection:

• exactly 2 jets and a pair of same-flavor opposite-sign leptons.
• pT,j > 25 GeV &|ηj | < 2.5 GeV.

• Assign jet to a corresponding parton level object based on ∆R

• Assign leptons based on their charge
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GAN setup

• Use GAN to map detector level events to parton level events
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Unfolding the full distribution
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Slicing

Eq.(7) : pT ,j1 = 30 ... 100 GeV

Eq.(8) : pT ,j1 = 30 ... 60 GeV and pT ,j2 = 30 ... 50 GeV
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GAN setup
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Problems

• No use of detector level information

• No concept of locality

• No stochastic mapping

→ Conditional GAN
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Conditional GAN I
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Conditional GAN I
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Full distributions
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→ Nice by-product: No systematic effect in the tails!
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Slicing

Eq.(7) : pT ,j1 = 30 ... 100 GeV (∼ 88%)

Eq.(8) : pT ,j1 = 30 ... 60 GeV and pT ,j2 = 30 ... 50 GeV (∼ 38%)
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→ Slices mapped correctly
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Inserting a W ′ resonance

• Network trained on SM data

600 800 1000 1200 1400 1600 1800 2000
m``jj [GeV]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 σ
d
σ

d
m
``
jj

[G
eV
−

1
]

×10−3

Truth (W’)

FCGAN

Truth (SM)

• Mean reproduced correct

• Width smeared out
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Summary

• GANs can learn underlying distributions from event samples

• MMD improves performance for special features

• Generate difference of two event distributions

• Unfolding with standard GAN: No meaningful detector ↔ parton matching

• Conditional GAN to link detector and parton level events
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