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Statistics Versus Machine Learning
Historically we tend to differentiate between statistics and machine learning as related but 
separate discplines.

In this talk, I wish to deemphasize this distinction, and more think in terms of:

● Model-free versus model-based

Can I construct a low-dimensional statistical model that describes my data, founded in my 
domain-specific knowledge? Can I construct a likelihood? Do I have domain-specific 
knowledge about how the data come about? Or do I need to resort to a high-dimensional 
empirical parametrization of the dependency of a label w.r.t. the features?

● Gradient-free versus gradient-based

   Many of our data science problems are ultimately optimization problems. Do I have
   an analytical gradient for my objective function? Can I perform gradient descent
   to find the extremum of my objective function?

In this talk I will argue that with novel hardware and data science tools, we can aim at 
higher dimensional BSM models, merge the notion of “model building” with statistical 
learning, and employ gradient-free and ultimately gradient-based learning techniques to 
infer the NSM. 4
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Say you have a favorite BSM model. 

Computing the LHC observables for your favorite model 
is often technically challenging – as this audience knows 
very well – but it is (usually) a clearly defined, deductive 
task. If your BSM model is not too exotic, the tools are 
alreay in place – again, thanks also to major intellectual 
efforts like the ones at Mcnet. I will refer to this as the 
“forward problem”.

An inverse problem

6Plot stolen from Jamie Tattersall’s slides



  

An inverse problem
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Computing the LHC observables for your favorite BSM 
model is a very difficult but clearly defined, deductive task:
the “forward problem” 

Plot stolen from Jamie Tattersall’s slides



  

An inverse problem
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But how about the other way round?

Building the prospective Next Standard Model (NSM) from 
all our wonderful LHC results is inductive reasoning – one 
tries to infer the general rules behind one’s concrete 
observations.

It is by construction ill-defined, and there is no guaranteed 
recipe for success.

And yet, constructing the NSM is our ultimate goal as we 
search for new signs for physics, is it not?

I shall refer to this challenge as our “Inverse Problem” (PI)*.

*PI because it is inverse



  

Hitoshi Murayama’s 
impression of
The Theory Landscape – 

It shows a large number of ideas.

Most ideas come with a large 
number of free parameters!

Presumably still our best NSM 
candidate is the minimal 
supersymmetric standard model, 
the MSSM.

It has 100+ parameters.

9



  

These ideas need to be systematically confronted with LHC and non-LHC results.
The number of LHC physics publications alone is O(1000) and counting!

10



  

So what do all these results

tell us about 
all these ideas?
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Didn’t we have similar problems in the past?

If yes, how did we solve them?

If no, what’s different?

Now you might wonder:

12



  

A situation unlike in the past
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How did we solve such problems in the past?

Previous successful endeavours like the Higgs or the top 
discoveries were driven by very clearly defined models.
E.g. the Higgs mechanism had only one free parameter – the 
Higgs mass. Classical hypothesis testing was all that was 
needed. 



  

In other words …
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Let’s say we see a few mild excesses in a few 
channels/analyses, hints of a “dispersed signal”. 
How would we proceed?

How would be build, establish, and endorse a 
Next Standard Model?



  

Top-down versus bottom-up

Throughout my talk I shall distinguish between “top-down” and “bottom-up” approaches.

Start here: You have a 
great idea for a model.
You write down the 
model’s Lagrangian

You calculate all observables.
Comparing with data you
compute p(data|theory).
From this you compute 

a test statistic T.

Top-
Down:

T 
is 

“good”?

yes

Congratulations. Fly to Stockholm.
Claim your prize.

noCome up with a better idea.

15



  

Top-down versus bottom-up

Throughout my talk I shall distinguish between “top-down” and “bottom-up” approaches.

Start here: You describe your experimental findings in a language 
amenable to theoretical physics, e.g. simplified models for on-shell 
effects (“searches”), effective field theories for off-shell
effects (“measurements”).

Bottom-
Up:

From the descriptions you try and construct precursor theories to the NSM
that describe everything you really know about 
TeV-scale (and below) physics

Only now do you think about symmetries, gauge groups, etc that 
may underlie all observations. Construct your Lagrangian.

16



  

Can we “machine-learn” the Next 
Standard Model?

Part 2 – Top-Down
17



  

The early days: (frequentist) hypothesis 
testing in low-dimensional model 

spaces 
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Example: fits by the Fittino collaboration of the parameters of possibly the simplest 
supersymmetric theory: the “constrained Minimal Supersymmetric Model” (cMSSM), spring 
2012 (right before the discovery of the Higgs boson)

arxiv:1204.4199

The model (CMSSM) was a 4 (5) -
dimensional model, with only two “essential” 
parameters: the model was just 
systematically “scanned”.

The plot on the left shows the frequentist CL 
quantiles of low-energy observables (LEO).

“LEOs” comprised excesses in B-meson 
measurements, as well as e.g. (g-2)

μ

https://arxiv.org/pdf/1204.4199.pdf


  

The early days: (frequentist) hypothesis 
testing in low-dimensional model 

spaces 

19

Needless to say, soon after these models and  model points were essentially killed by CMS 
and ATLAS searches.

excluded by 2012



  

The early days: (frequentist) hypothesis 
testing in low-dimensional model 

spaces 
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excluded by 2012

Take-away messages: negative statements, exclusion lines are simple, well defined, and 
epistemologically correct. Positive statements about BSM are very relative statements 
only (“this region is favored over that region”). The theory is not disseminated. The model 
selection problem (why cMSSM?) is not addressed.



  

Raising the stakes:
 higher dimensional 

models
and Bayesian statistics

21



  

If we allow for Bayesian statistics, we can ask a slightly 
different question:

What does the LHC teach us about NSM physics, that we didn’t 
know before?

Our knowledge of the NSM
in light of LHC data ...

… is proportional to ...

… the likelihood of our data, 
given the theory ...

… times our prior 
knowledge of NSM
physics

JHEP 1610 (2016) 129 22

https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

In their publication, CMS answered a smaller question: what did 
the CMS searches for new physics teach us about the 
phenomenological Minimal Supersymmetric Model (pMSSM)?

Our knowledge of the pMSSM
in light of the CMS search 

results ...
… is proportional to ...

… the likelihood of our data, 
given the pMSSM ...

… times our prior 
knowledge of the 
pMSSM

The pMSSM is a phenomenological,  “stripped-down” version of the 
Minimal Supersymmetric Model (MSSM), with constraints put on all 
model parameters that have no big effect on LHC “phenomenology”.
It has 18 or 19 free parameters → a major “upgrade” from the 4 or 5 
free parameters of the cMSSM!

JHEP 1610 (2016) 129
23

Bayesians have more Fun

https://arxiv.org/pdf/hep-ph/9901246.pdf
https://link.springer.com/article/10.1007%2FJHEP10%282016%29129


  

Bayesians have more Fun
→  what’s our information on the pMSSM prior to looking at 
CMS’es search results?

“Previous 
measurements”

24



  

Bayesians have more Fun
→  what’s the likelihood of CMS’es search 
results, given the pMSSM?

25

About 10 new CMS 
searches for new 

physics!



  

Bayesians have more Fun
→  what did CMS’es searches teach us about 
the pMSSM? Prior versus posterior!

Blue area: Our 
prior knowledge 
about the mass 
of the partner 
particle of the 
gluon, the gluino

Our a posteriori 
knowledge of the mass 
of the gluino, after the 
first LHC “run” (red line), 
and the second run 
(black line).

26

Bayesian statistics can help us describe what we learned. Higher dimensional 
phenomenological models are better suited to describe what we are actually seeing. In 
this publication, however, the model selection problem was also not addressed.
 
 



  

Answer 1: A widely-used frequentist method is the Akaike Information 
Criterion (AIC).

     is the maximum likelihood of the model, k are the free parameters. Models 
get punished for adding parameters. Compute AIC for all your models. 
Choose model with lowest AIC.

Answer 2: In Bayesian statistics, Bayes factors and the closely connected 
Bayes Information Criterion (BIC) are much used.

Intermission: Model Selection

Question: In statistics, what are the default approaches to solve model 
selection problems?

(Bayes factors are likelihood ratios with marginalized (=integrated) theory 
parameters.) 27

https://pubmed.ncbi.nlm.nih.gov/22309957/

https://pubmed.ncbi.nlm.nih.gov/22309957/


  

Answer: these algorithms work well with a finite set of models, with not too many  
(<< 100) parameters. The true model ideally should be an element of the set of 
models being tested (e.g. the proof of the AIC being “consistent” depends on it).

So again, our situation is too vague to naively apply the standard procedures.

We may make use of these algorithms, but we may need to be smarter still.

My proposal in this lecture will be an algorithm that “merges” model building with 
model selection.

Intermission: Model Selection

Question: So why can’t we just employ such a model selection algorithm and be
done with the inverse problem?

28



  

Can we “machine-learn” the Next 
Standard Model?

Part 3 – Bottom-up
29



  

In lack of a clear idea of what theory are 
looking for ….

… why not start with data?

Start here: You describe your experimental findings in a language 
amenable to theoretical physics, e.g. simplified models for on-shell 
effects (“searches”), effective field theories for off-shell
effects (“measurements”).

Bottom-
Up:

From the descriptions you try and construct precursor theories to the NSM
that describe everything you really know about 
TeV-scale (and below) physics

Only now you think about symmetries, gauge groups, etc that may underlie
all observations. Construct your Lagrangian.

30



  

Abstraction layers

Q: How can we describe our experimental findings in a 
language that plays to theory?

A: Simplified models (SMS) were developed to 
summarize the results of searches for new physics.

Likewise, effective field theories allow for a simple 
description of measurements – in the form of 
likelihoods on Wilson coefficients.

As I myself have been working on simplified models 
but not on effective field theories I shall focus on SMS.

31



  

Recap: What is a Simplified Model?

32

A visual representation of one specific simplified model:

1. The BSM “mother” particles are 
fixed.
In this case, they are top-partner quarks
(“stops”).

2. The decay is also fixed: in this 
simplified model, the stops always 
decay to a top and the dark matter 
candidate (“neutralino”)

3. The production cross section is 
a free parameter. “Full” theories 
will predict production cross 
sections for simplified models; 
the experimental results will be 
formulated as limits on these
production cross sections.



  

Recap: What is a Simplified Model?

33

We were able to convince the CMS and ATLAS collaborations to present the 
experimental findings as upper limits on the production cross sections of simplified 
models.

CMS-PAS-SUS-17-012

specifies the
simplified 
model; it 
corresponds to 
this:

the mass of the
“mother” particle

the mass of the  
“daughter” particle

The color encodes
the 95% 
confidence level 
limit on the 
production cross 
section, for that 
model with given 
masses.

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS-17-012/index.html


  

Disclaimer

34

In the remainder of this talk I shall present work that is being done 
within our SModelS collaboration.

Sorry about the apparent self-promotion, but I promise I will focus 
on the big concepts. I shall also argue that the building blocks I will 
present – 

● proto-models, 

● MCMC-based automated model building, 

● gradient-accelerated model building, 

● differentiable inductive reasoning 

– can be repurposed, and reused in other contexts (e.g. with 
effective field theories)



  

SModelS – a decomposer
 and a database

https://arxiv.org/pdf/1312.4175.pdf

https://arxiv.org/pdf/2005.00555.pdf

Our first publication

Our most recent
publication

35

https://arxiv.org/pdf/1312.4175.pdf
https://arxiv.org/pdf/2005.00555.pdf


  

SModelS – a decomposer
 and a database

We decompose full theories into simplified models, and match them against our database.

36



  

SModelS – a decomposer
 and a database

We laboriously collected CMS’ and ATLAS’ SMS results and are now proud owners of 
a database of results from approx. 50 (CMS) + 50 (ATLAS) analyses.

37



  

SModelS – a decomposer
 and a database

For many (but not all) of the results in our database we can construct approximate 
likelihoods. Now if we know which of these likelihoods are approximately uncorrelated,
we can perform combinations: searching for hints of potential dispersed signals in published 
results becomes a combinatorial problem!

prelim
inary

38



  

Proto-models

In order to identify potential dispersed signals, we need to build theoretical contexts for 
them: we need to build precursor models for the NSM, with a particle content that is typically 
larger than that of individual SMSes, but much smaller than the particle content of SUSY.
We call these precursor theories “proto-models”. Think of them as “stacked up” simplified 
models.

http://www.hephy.at/user/wwaltenberger/models/mcmc.webm

to appear on arXiv hopefully 

soonish
39

http://www.hephy.at/user/wwaltenberger/models/mcmc.webm


  

Proto-models

How do we construct such protomodels? In the publication we are working on right now,
we propose that we construct them in a random walk.
Instead of walking the parameter space of e.g. the pMSSM, we walk in the space of all 
possible protomodels.

Possible actions being taken within
the MCMC walk:

● randomly add a BSM particle

● randomly remove a BSM particle

● randomly change a particle’s mass

● randomly change the decay of a 
particle (channels and ratios)

● randomly change a signal strength    
multiplier

● ….

An AIC-like criterion penalizes for newly 
introduced degrees of freedom.
This is very similar to “weight decay” in neural 
networks, or “regularization” in classical 
regression. 40



  

Proto-models

41



  

Proto-models

The overall vision of this being that instead of postulating NSM candidates and then 
falsifying them (or failing to do so), we put the model building into the statistical procedure 
itself. A slow, bottom-up  procedure, starting from data.

prelim
inary

prelim
inary

A handful of “mild” excesses. Irrelevant, if
taken individually. 42



  

Proto-models

Our MCMC walks are but a crutch, a burden we must carry because we do not have 
derivatives, i.e. gradients and Hessians. 

If we had gradients we could instead perform gradient descent to find the best model, and 
we could use the Fisher information to infer the errors on its parameters.

So, how about we make the whole chain differentiable?

43



  

One Chain To Rule Them All

Our MCMC walks are but a crutch, a burden we must carry because we do not have 
derivatives, i.e. gradients and Hessians. 

If we had gradients we could instead perform gradient descent to find the best model, and we could 
use the Fisher information to infer the error on its prameters (if you want non-Gaussian posteriors you 
can still MCMC-sample if you wish).

So, how about we make the whole chain differentiable?

Needless to say, the data pipeline sketched above is not the only feasible one.
Differentiability however would be a helpful tool for all possible data pipelines.
A similar rationale would apply also to EFTs, Wilson coefficients and data from 
measurements.

described as likelihoods L that are 
differentiable with respect to the 
yields y

i

we have started an effort 
to make SModelS 
differentiable w.r.t SMS 
parameters p

j
, by learning 

our entire database: 

for individual candidates we can make this 
differentiable w.r.t fundamental parameters 
Θ

l
, via neural networks, with efforts similar to 

DeepXS, or “TheoryGANs” [*]:

thats just a sum of
simplified models → 
differentiable!

https://arxiv.org/abs/1810.08312

. . .

44

https://arxiv.org/abs/1810.08312


  

. . .

Differentiable induction

45

“statistics”,
statistical models “machine learning”, surrogate models

differentiable programming

we have started an effort 
to make SModelS 
differentiable w.r.t SMS 
parameters p

j
, by learning 

our entire database: 

thats just a sum of
simplified models → 
differentiable!

described as likelihoods L that are 
differentiable with respect to the 
yields y

i

for individual candidates we can make this 
differentiable w.r.t fundamental parameters 
Θ

l
, via neural networks, with efforts similar to 

DeepXS, or “TheoryGANs” [*]:



  

All of this is to say, that we realistically can try to “learn” 
the fundamental laws of the universe from data, as 
opposed to postulating them. Gradient-free for starters,
adding gradients in the long run.

“differentiable inductive reasoning”, if you wish.

. . .

Differentiable induction

46



  

Inferring fundamental laws of physics from observations is an 
inductive step. We may be lucky and “guess” correctly, but in general 
there is no guarantee for success.

We can think of the approaches pursued as being either “top-down” 
(starting from an idea in theoretical physics) or “bottom-up” (starting from 
data). 

Algorithmically we can distinguish between gradient-free approaches, (e.g. 
MCMC walks) or gradient-based methods (e.g. using surrogate NN theory 
models). So far, however approaches have been gradient-free.

Bayesian MCMC walks can naturally be combined with the notion of 
phenomenological “bottom-up” model building.

Gradients can majorly speed up inference and allow for higher 
dimensional models. Surrogate (neural network) models automatically 
deliver gradients! Differentiable programming for the win! 

Summary

47
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SModelS confronts theories beyond the Standard 
Model (BSM) with LHC search results by decomposing 
full models into their simplified models topologies, and 
comparing the cross section predictions of these 
individual  topologies with a database of SMS results.

Recap: the Idea behind 
SModelS                 

S
pe

ed

Constraining power

Simplified
model

Full
simulation

49



  

Recap: How SModelS 
works
1) Decomposition of a fundamental model

Input: SLHA file (mass 
spectrum, BRs) or 
LHE file (parton level)

Currently the model 
must have a Z

2 

symmetry

The decomposition 
produces a set of 
simplified model 
topologies (dubbed  
“elements”) 50



  

2) Description of the topology in the SModelS 
formalism

Each topology is described by:
• Topology shape + final states
• BSM masses
• σ x BR

We (currently) ignore spin, color, etc of the 
BSM particles

It is model independent, there is no reference 
to the original model

Recap: How SModelS 
works

51



  

3) Comparison of predicted signal strengths
with experimental result:

• Upper Limit Results:
Predicted signal strength = σ x BR
Experimental result:  σ

UL

• Efficiency Map Results:
Predicted signal strength = ∑  σ x BR 
x ε
Experimental result: σ

UL
=N

UL
/ L  from 

N
observed

, expected(BG), error(BG)

• r = predicted  /  σ
UL 

• Model is excluded if most 
constraining analysis has r > 1 

Recap: How SModelS 
works

52
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