CLFV searches at PSI and future developments

Angela Papa Paul Scherrer Institute (Switzerland) and University of Pisa/INFN (Italy) Physics Beyond Collider, 8-11 June 2020 (remote meeting)

Content

- Introduction: Charged Lepton Flavour violations searches
- Status of the MEGII experiment
- Status of the Mu3e experiment
- The Most Intense DC Muon beams in the World: future prospects

Charged lepton flavour violation search: Motivation

Current upper limits on \mathcal{B}_i

					Γ_i
					$\mathcal{B}_i = \frac{1}{\Gamma_{tot}}$
0 10 ⁻⁵⁰	10 -40	10 -30	10-20	10-13 10-10	10 ⁰
<u>SM</u>			Ne	<u>w Physics</u>	

Complementary to "Energy Frontier"

cLFV searches with muons: Status and prospects

In the near future impressive sensitivities:

	Current upper limit	Future sensitivity
$\mu ightarrow e \gamma$	4.2 x 10 ⁻¹³	~ 4 x 10 ⁻¹⁴
$\mu \rightarrow eee$	1.0 x 10 ⁻¹²	~1.0 x 10 ⁻¹⁶
$\mu N \to e N'$	7.0 x 10 ⁻¹³	few x 10 ⁻¹⁷

• Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV

cLFV: "Effective" lagrangian with the k-parameter

cLFV searches with muons: Status and prospects

In the near future impressive sensi	tivities: Set at PSI	
	Current upper limit	Future sensitivity
$\mu ightarrow e\gamma$	4.2 x 10 ⁻¹³	~ 4 x 10 ⁻¹⁴
$\mu \rightarrow eee$	1.0 x 10 ⁻¹²	~1.0 x 10 ⁻¹⁶
$\mu N \to e N'$	7.0 x 10 ⁻¹³	few x 10 ⁻¹⁷

· Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV

Beam features vs experiment requirements

- Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities
 - $DC {or Pulsed}?$ $I_{beam} ~ 10^{10} \mu/s$ DC beam for coincidence experiments
 • μ→eγ, μ→e e e $\mu \rightarrow e\gamma, \mu \rightarrow e e e$ • μ-e conversion

Beam features vs experiment requirements

- Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities
- $am \sim 10^8 10^{10} \, \mu/s$ DC beam for coincidence experiments
 - $\mu \rightarrow e \gamma, \mu \rightarrow e e e$

- DC or Pulsed?
 - l_{beam} ~ 1011 μ/s Pulse beam for noncoincidence experiments
 - μ-e conversion

The world's most intense continuous muon beam

- τ ideal probe for NP
 w. r. t. μ
 - Smaller GIM suppression
 - Stronger coupling
 - Many decays
- µ most sensitive probe
 - Huge statistics

- PSI delivers the most intense continuous low momentum muon beam in the world (**Intensity Frontiers**)
- MEG/MEG II/Mu3e beam requirements:
 - Intensity O(10⁸ muon/s), low momentum p = 29 MeV/c
 - Small straggling and good identification of the decay

590 MeV proton ring cyclotron **1.4 MW**

PSI landscape

The world's most intense continuous muon beam

• PSI High Intensity Proton Accelerator experimental areas

MEG: Signature, experimental setup and result

A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C73 (2013) 2365

A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C76 (2016) no. 8, 434

- The MEG experiment aims to search for $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of ~10⁻¹³ (previous upper limit BR($\mu^+ \rightarrow e^+ \gamma$) $\leq 1.2 \times 10^{-11}$ @90 C.L. by MEGA experiment)
- Five observables (E_g, E_e, t_{eg}, ϑ_{eg} , φ_{eg}) to characterize $\mu \rightarrow e\gamma$ events

The MEGII experiment

Where we will be

MEGII: The upgraded LXe calorimeter

- Final aim: To confirm with data that the expected detector performances will be achieved and maintained over the time
- Xe Light Yield and purity
- Photosensor behaviour (gain, PDE/ QE) at high beam intensity
- Evaluation of the gamma kinematical variables with the whole TDAQ: Energy (O(4000 channels)), Time and Positions. Low level noise crucial (i.e. coherent contribution)
- Current study: Based on a limited amount of channels

	MEG	MEGII
u [mm]	5	2.4
v [mm]	5	2.2
w [mm]	6	3.1
E [w<2cm]	2.4%	1.1%
E [w>2cm]	1.7%	1.0%
t [ps]	67	60

MEGII: The new single volume chamber

- Improved hit resolution: $\sigma_r \sim < 120$ um (210 um)
- High granularity/Increased number of hits per track/cluster timing technique
- Less material (helium: isobutane = 90:10, 1.6x10⁻³ X_0)
- High transparency towards the TC
- Assembly: Completed!

	MEG	MEGII
p [keV]	306	100
heta [mrad]	9.4	6.3
ϕ [mrad]	8.7	5.0
ϵ [%]*	40	70

(*) It includes also the matching with the Timing Counter

MEGII: the pixelized Timing Counter

- Higher granularity: 2 x 256 of BC422 scintillator plates (120 x 40 (or 50) x 5 mm³) readout by AdvanSiD SiPM ASD-NUM3S-P-50-High-Gain
- Improved timing resolution: from 70 ps to 35 ps (multi-hits)
- Less multiple scattering and pile-up
- Assembly: Completed
- Expected detector performances confirmed with data

MEGII: The Radiative Decay Counter

 Added a new auxiliary detector for background rejection purpose. Impact into the experiment: Improved sensitivity by 20%

MEG/II: The calibration methods

 Multiple calibration and monitoring methods: detector resolution and stability are the key points in the search for rare events over the background

Proc	Cess	Energy (MeV)	Frequency
CEX reaction	$p(\pi^-,\pi^0)n,\pi^0 \to \gamma\gamma$	55, 83	annually
	$^{7}\mathrm{Li}(p,\gamma_{17.6})^{8}\mathrm{Be}$	17.6	weekly
	$^{11}B(p,\gamma_{11.6})^{12}C$	4.4&11.6	weekly
Neutron Generator	$^{58}\mathrm{Ni}(n,\gamma_9)^{59}\mathrm{Ni}$	9	daily
Mott Positrons	$p(e^+, e^+)p$	53	annually

MEGII: The new electronic - DAQ and Trigger

- DAQ and Trigger
 - ~9000 channels (5 GSPS)
 - Bias voltage, preamplifiers and shaping included for SiPMs
- 256 channels (1 crate) abundant tested during the 2016 pre-engineering run; >1000 channels available for the 2017, 2018 and 2019 pre-engineering runs
- Trigger electronics and several trigger algorithms included and successfully delivered for the test beams/engineering runs

Mu3e: The $\mu^+ \rightarrow e^+ e^+ e^-$ search

- The Mu3e experiment aims to search for $\mu^+ \rightarrow e^+ e^-$ with a sensitivity of ~10⁻¹⁵ (Phase I) up to down ~10⁻¹⁶ (Phase II). Previous upper limit BR($\mu^+ \rightarrow e^+ e^-$) $\leq 1 \times 10^{-12}$ @90 C.L. by SINDRUM experiment)
- Observables (E_e, t_e, vertex) to characterize $\mu \rightarrow$ eee events

Mu3e: Requirements

Signal

- ^{1.} $\mu \rightarrow eee$
- Rare decay search: Intense muon beam O(10*8 muon/s) for phase I
- High occupancy: High detector granularity
- Three charged particles in the final state: allowing for high detector performances vs the case of having neutral particle

Background

- 1. $\mu \rightarrow eee\nu\nu$
- Missing energy: Excellent momentum resolution

2. $\mu \to e \nu \nu$, $\mu \to e \nu \nu$, e^+e^-

 Coincidence and vertex: High timing and position resolutions

The Mu3e experiment: Schematic 3D

The Mu3e experiment: R&D completed. Prototyping phase

The MEGII and Mu3e experimental area: Pictures

Mu3e extra platforms

Overview piE5 area

The compact muon beam line: Results

- A dedicated compact muon beam line (CMBL) will serve Mu3e
- Proof-of-Principle: Delivered 8 10⁷ muon/s during 2016 test beam

Target and magnet: Status

- Target: Mylar double hollow cone (L = 100 mm, R = 19 mm), Stopping efficiency: ~ 83%, Vertex separation ability (tracking) < 200 um
- Magnet from Cryogenic. Delivering Time at PSI: in fall this year
- Field Intensity: 1T; Field description: $dB/B \le 10^{-4}$; Field stability: $dB/B(100 d) \le 10^{-4}$

Target prototype

The pixel tracker: Overview

- Central tracker: Four layers; Re-curl tracker: Two layers
- Minimum material budget: Tracking in the scattering dominated regime
- Momentum resolution: < 0.5 MeV/c over a large phase space; Geometrical acceptance: ~ 70%; X/X₀ per layer: ~ 0.011%

The pixel tracker: The MuPix prototypes

- Based on HV- MAP: Pixel dimension: 80 x 80 μm^2 , Thickness: 50 μm , Time resolution: < 20 ns, Active area chip: 20 x 20 mm², Efficiency: > 99 %, Power consumption : < 350 mW/cm²
- MuPix 7: The first small-scale prototype which includes all Mu3e functionalities
- MuPix 8, the first large area prototype: from O(10) mm² to 160 mm²: Ready and extensively tested!
- MuPix 9, small test chip for: Slow Control, voltage regulators and other test circuits. 2019 year test beam campaign
- MuPix 10, the final version for Mu3e: 380 mm²

MuPix8

Mupix 7 telescope

The timing detectors: Fibers and tiles

- Precise timing measurement: Critical to reduce the accidental BGs
 - Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%)
 - Scintillating tiles O(100 ps), full detection efficiency (>99%)

The timing detectors: Fibers and tiles

- Precise timing measurement: Critical to reduce the accidental BGs
 - Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%)
 - Scintillating tiles O(100 ps), full detection efficiency (>99%)

SciFi prototypes: Results

- Studied a variety of fibres (SCSF 78 MJ, clear; SCSF 78 MJ, with 20% TiO2; NOL 11, clear; NOL 11, with 20% TiO2; SCSF 81 MJ, with 20% TiO2; BCF12 clear; BCF12, with 100 nm Al deposit)
- Confirmed full detection efficiency (> 96 % @ 0.5 thr in Nphe) and timing performances for multi-layer configurations (square and round fibres) with several prototypes: individual and array readout with standalone and prototyping (STiC) DAQ

SiPM Array: Hamamatsu S13552-HQR

Tile Prototype: Results

- Mu3e requirements fulfilled: Full detection efficiency (> 99 %) and timing resolution O (60) ps
- 4 x 4 channel BC408
- 7.5 x 8.5 x 5.0 mm³
- Hamamatsu S10362-33-050C (3 x 3 mm²)
- readout with STiC2

- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Strategy:
 - Target optimization
 - Beam line optimization
- Time schedule: O(2025)

Target optimization

•

- Target geometry and alternate materials
 - Search for higher muon yield

50% of muon beam intensity gain, would corresponds to effectively raising the proton beam power at PSI by **650 kW**, equivalent to a beam power of almost **2 MW** without the additional complications such ad increased energy and radiation deposition into the target and its surroundings

- Beam line optimisation
 - Increased capture and transmission

 Put into perspective the beam line optimisation the equivalent beam power would be of the order of several tens of MW
 ³⁶

Slanted target: Prototype test in 2019

- Expected 30-60% enhancement
- · Measurements successfully done in different experimental areas in fall 2019
- Analysis still undergoing: increased muon yield CONFIRMED!

Outlooks

cLFV remains one of the most exciting place where to search for new physics

- Astonishing sensitivities in muon cLFV channels are foreseen for the incoming future
 - MEGII and Mu3e will search also for more exotic processes
 - In evidence: first direct search of $\mu \rightarrow eX$, X -> $\gamma\gamma$ with the MEG experiment, arXiv:2005.00339
- HiMB, a new beam line project at PSI, aims at delivering surface high intensity muon beams O(10¹⁰ muon/s)
 - Opening the door to interesting physics opportunities for particle physics and materials science using highintensity and high-brightness muon beams (Mu3e Phase II, muEDM, MuSR, muonium spectroscopy, ...)

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Thanks for your attention!

Credits: MEGII, Mu3e and HiMB ³⁸

Back-up

The MEG experiment vs the MEGII experiment

The MEG experiment vs the MEGII experiment

The MEGII and Mu3e beam lines

- MEGII and Mu3e (phase I) similar beam requirements:
 - Intensity O(10⁸ muon/s), low momentum p = 28 MeV/c
 - Small straggling and good identification of the decay region
- A dedicated compact muon beam line (CMBL) will serve Mu3e
- Proof-of-Principle: Delivered 8 x 10⁷ muon/s during 2016 test beam

The Mu3e CMBL

The MEGII BL

MEGII: The upgraded LXe calorimeter

- Increased uniformity/resolutions
- Increased pile-up rejection capability
- Increased acceptance and detection
 efficiency
- Assembly: Completed
- Detector filled with LXe
- Construction completed in 2017

	MEG	MEGII
u [mm]	5	2.4
v [mm]	5	2.2
w [mm]	6	3.1
E [w<2cm]	2.4%	1.1%
E [w>2cm]	1.7%	1.0%
t [ps]	67	60

MEGII: the pixelized Timing Counter

Ready for the MEGII physics run !

MEGII: new calibration methods and upgrades

- CEX reaction: $p(\pi^-, \pi^0)n, \pi^0 \rightarrow \gamma \gamma$
- 1MV Cockcroft-Walton accelerator
- Pulsed D-D Neutron generator
- NEW: Mott scattered positron beam to fully exploit the new spectrometer
- NEW: SciFi beam monitoring. Not invasive, ID particle identification, vacuum compatible, working in magnetic field, online beam monitor (beam rate and profile)
- NEW: Luminophore (CsI(TI) on Lavsan/Mylar equivalent) to measure the beam properties at the Cobra center

Target and magnet: Status

- Target: Mylar double hollow cone (L = 100 mm, R = 19 mm), Stopping efficiency: ~ 83%, Vertex separation ability (tracking) < 200 um New
- Magnet from Cryogenic. Delivering Time at PSI: This year
- Field Intensity: 1T; Field description: $dB/B \le 10^{-4}$; Field stability: $dB/B(100 d) \le 10^{-4}$
- Dimensions: L < 3.2 m, W < 2.0 m, H < 3.5 m

The coil and the shield surrounding it.*

Target prototype

The pixel tracker: Overview

- Central tracker: Four layers; Re-curl tracker: Two layers
- Minimum material budget: Tracking in the scattering dominated regime
- Momentum resolution: < 0.5 MeV/c over a large phase space; Geometrical acceptance: ~ 70%; X/X₀ per layer: ~ 0.011%

The pixel tracker: Current and future plan

- After an extensive test beam campaign, achieved milestones
 - A fully functional HV-MAPS chip, 3x3 mm^{2,} Operation at high rates: 300 kHz at PSI; up to 1 MHz at SPS
 - Crosstalk on setup under control, on chip seen. Mitigation plan exists (MuPix8), Routinely operated systems of up to 8 chips in test beams reliably
 - Data processing of one telescope at full rate on GPU demonstrated
- Next steps
 - MuPix 8, the first large area prototype: from O(10) mm² to 160 mm²: Ready and extensively tested!
 - MuPix 9, small test chip for: Slow Control, voltage regulators and other test circuits. 2019 year test beam campaign
 - MuPix 10, the final version for Mu3e: 380 mm²

MuPix8

H. Augustin wt al. Nucl. Instr. Meth., A936 681 (2019) H. Augustin et al. arXiv:1905.09309

MuPix 8: First Results

- Extensive beam test performed during 2018
- Some preliminary results

The timing detectors: Impact

- Precise timing measurement: Critical to reduce the accidental BGs
 - Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%)
 - Scintillating tiles O(100 ps), full detection efficiency (>99%)

The Fiber detector (SciFi): Overview

Parts

- cylindrical at ~ 6 cm (radius);
- length of 28-30 cm;
- 3 layers of round or square
- multi-clad 250 µm fibres
- fibres grouped onto SiPM array .
- MuSTiC readout

Constraints

- high detection efficiency $\epsilon > 95\%$
- time resolution $\sigma < 1$ ns
- < 900 µm total thickness
 - $< 0.4 \% X_0$
- rate up to 250 KHz/fibre
- very tight space for cables, electronics and cooling

SciFi prototypes: Results

- Studied a variety of fibres (SCSF 78 MJ, clear; SCSF 78 MJ, with 20% TiO2; NOL 11, clear; NOL 11, with 20% TiO2; SCSF 81 MJ, with 20% TiO2; BCF12 clear; BCF12, with 100 nm Al deposit)
- Confirmed full detection efficiency (> 96 % @ 0.5 thr in Nphe) and timing performances for multi-layer configurations (square and round fibres) with several prototypes: individual and array readout with standalone and prototyping (STiC) DAQ

The Tile detector: Overview

Parts

- cylindrical at ~ 6 cm (radius)
- length of 36.4 cm
- 56 x 56 tiles of 6.5 x 6.5 x 5 mm³
- 3 x 3 mm² single SiPM per tile
- Mixed mode ASIC: MuTRiG

Requirements

- high detection efficiency $\varepsilon > 95\%$
- time resolution $\sigma < 100$ ps
- rate up to 50 KHz per tile/channel

The Tile detector: Overview

Parts

- cylindrical at ~ 6 cm (radius)
- length of 36.4 cm
- 56 x 56 tiles of 6.5 x 6.5 x 5 mm³
- 3 x 3 mm² single SiPM per tile
- Mixed mode ASIC: MuTRiG

Requirements

- high detection efficiency $\varepsilon > 95\%$
- time resolution $\sigma < 100 \text{ ps}$
- rate up to 50 KHz per tile/channel

MuTRiG

- Mixed mode, ~ 50 ps timestamps, high impedance, optional differential
- Commissioning started!

- Back to standard target to exploit possible improvements towards high intensity beams:
 - Target geometry and alternate materials

•

• Search for high pion yield materials -> higher muon yield

relative μ^+ yield $\propto \pi^+$ stop density $\cdot \mu^+$ Range \cdot length $1 = \rho_*(6/12)_*$

$$\propto n \cdot \sigma_{\pi^+} \cdot SP_{\pi^+} \cdot \frac{1}{SP_{\mu^+}} \cdot \frac{\rho_C(0/12)_C}{\rho_x(Z/A)_x}$$

$$\propto Z^{1/3} \cdot Z \cdot \frac{1}{Z} \cdot \frac{$$

Target optimization

•

- **Target geometry and alternate materials**
 - Search for high pion yield materials -> higher muon yield

50% of muon beam intensity gain, would corresponds to effectively raising the proton beam power at PSI by **650 kW**, equivalent to a beam power of almost **2 MW** without the additional complications such ad increased energy and radiation deposition into the target and its surroundings

DC and Pulsed muon beams - present and future

Laboratory	Beam Line	DC rate (μ/sec)	Pulsed rate (μ /sec)
PSI (CH) (590 MeV, 1.3 MW)	$\mu E4, \pi E5$ HiMB at EH	$2 \div 4 \times 10^8 \ (\mu^+) \\ \mathcal{O}(10^{10}) \ (\mu^+) \ (>2018)$	
J-PARC (Japan) (3 GeV, 210 kW) (8 GeV, 56 kW)	MUSE D-Line MUSE U-Line COMET		$ \begin{array}{c} 3 \times 10^7 (\mu^+) \\ 6.4 \times 10^7 (\mu^+) \\ 1 \times 10^{11} (\mu^-) (2020) \end{array} $
FNAL (USA) (8 GeV, 25 kW)	Mu2e		$5 \times 10^{10} (\mu^{-}) (2020)$
TRIUMF (Canada) (500 MeV, 75 kW)	M13, M15, M20	$1.8 \div 2 \times 10^6 (\mu^+)$	
RAL-ISIS (UK) (800 MeV, 160 kW)	EC/RIKEN-RAL		$7 imes 10^4(\mu^-)\ 6 imes 10^5(\mu^+)$
KEK (Tsukuba, Japan) (500 MeV, 25 kW)	Dai Omega		$4 \times 10^5 (\mu^+)(2020)$
RCNP (Osaka, Japan) (400 MeV, 400 W)	MuSIC	$10^{4}(\mu^{-}) \div 10^{5}(\mu^{+}) \\ 10^{7}(\mu^{-}) \div 10^{8}(\mu^{+})(>2018)$	
JINR (Dubna, Russia) (660 MeV, 1.6 kW)	Phasotron	$10^5(\mu^+)$	
RISP (Korea) (600 MeV, 0.6 MW)	RAON	$2 \times 10^8 (\mu^+) (> 2020)$	
CSNS (China) (1.6 6eV, 4 kW)	HEPEA	$1 \times 10^8 (\mu^+) (> 2020)$	

DC and Pulsed muon beams - present and future

MEGII: The new single volume chamber

HV test @ +1.8 mm

Layer	S0	S1	S2	S3	S 4	S 5	S6	S7	S8	S9	S10	S11
9 (1500 V)	1500	1500	1500	1500	1500	1430	1500	1500	1500	1500	1500	1500
8 (1510 V)	1510	1510	1510	1500	1510	1510	1510	1510	1510	1510	1510	1510
7 (1520 V)	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520
6 (1530 V)	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530
5 (1540 V)	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540
4 (1550 V)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
3 (1560 V)	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560
2 (1570 V)	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570
1 (1580 V)	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580

MEGII: The new single volume chamber

1500 200 11 0 1450 10 100 2 9 1400 0 3 8 1350 -1004 5 6 1300 -2001250 -300 -100300 -200100 200 0 [mm]

HV test cell-by-cell L9+L8 @+1.8 mm (US endplate)

RESULTS

Safety HV values

- 27/384 cells (20 for L9 + 7 for L8) don't reach it (7 %)
- 8/27 cells (6 for L9 + 2 for L8) almost reach it
 - \circ 5 ÷ 20 V discrepancy
- > Working point
 - 12/384 cells (8 for L9 + 4 for L8) don't reach it (3 %)
 - 11/12 cells (6 for L9 + 4 for L8) have permanent shorts

CDCH @ +5.6 mm elongation fulfils the MEGII requirements

MuSIC at Research Center for Nuclear Physics (RCNP), Osaka University

Aim: O(10⁸ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam

cLFV search landscape

cLFV best upper limits

Process	Upper limit	Reference	Comment
μ+ -> e+ γ	4.2 x 10 ⁻¹³	arXiV:1605.05081	MEG
µ+ -> e+ e+ e-	1.0 x 10 ⁻¹²	Nucl. Phy. B299 (1988) 1	SINDRUM
µ⁻ N -> e⁻ N	7.0 x 10 ⁻¹³	Eur. Phy. J. c 47 (2006) 337	SINDRUM II
τ -> e γ	3.3 x 10 ⁻⁸	PRL 104 (2010) 021802	Babar
τ -> μ γ	4.4 x 10 ⁻⁸	PRL 104 (2010) 021802	Babar
T⁻ -> e⁻ e+ e⁻	2.7 x 10 ⁻⁸	Phy. Let. B 687 (2010) 139	Belle
τ> μ- μ+ μ-	2.1 x 10 ⁻⁸	Phy. Let. B 687 (2010) 139	Belle
τ> μ+ e- e-	1.5 x 10 ⁻⁸	Phy. Let. B 687 (2010) 139	Belle
Z -> µ e	7.5 x 10 ⁻⁷	Phy. Rev. D 90 (2014) 072010	Atlas
Z->µe	7.3 x 10 ⁻⁷	CMS PAS EXO-13-005	CMS
Η -> τ μ	1.85 x 10 ⁻²	JHEP 11 (2015) 211	Atlas (*)
Η -> τ μ	1.51 x 10 ⁻²	Phy. Let. B 749 (2015) 337	CMS
K _L -> μ e	4.7 x 10 ⁻¹²	PRL 81 (1998) 5734	BNL

The role of the low energy precision physics

• The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory

Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

•