

# axion like particles at colliders and beyond

Yotam Soreq

PBC meets theory: informal discussion about PBC selected topics 11 June, 2020





- originally the Axion propose as a solution to the strong CP problem
- \* appear in many BSM scenarios
- portal to dark matter and/or dark sector
- \* if very light, it is a dark matter candidate
- predicted by string theory

- originally the Axion propose as a solution to the strong CP problem
- \* appear in many BSM scenarios
- portal to dark matter and/or dark sector
- \* if very light, it is a dark matter candidate
- predicted by string theory

#### well motivated BSM scenario









#### ALPs at the MeV to the GeV scale

Aloni, YS, Williams - 1811.03474 Aloni, Fanelli,YS, Williams - 1903.03586

#### ALPs at the MeV to the GeV scale

$$\mathscr{L}_{\text{eff}} = -\frac{4\pi\alpha_s c_g}{\Lambda} a G^{\mu\nu} \tilde{G}_{\mu\nu} + \frac{c_{\gamma}}{4\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

 $c_g \neq 0 \text{ or } c_\gamma \neq 0$ 

probing at photon beam (Primakoff like) experiments
estimate of hadronic decay rates

#### ALPs at Primakoff like experiments



#### ALPs at Primakoff like experiments



#### ALPs at Primakoff like experiments

















Primakoff production of ALPs and  $P = \pi^0$ ,  $\eta$  are similar

$$\frac{d\sigma_{\gamma N \to aN}^{\text{elastic}}}{dt} = \frac{\Gamma_{a \to \gamma\gamma}}{\Gamma_{P \to \gamma\gamma}} \frac{\mathscr{H}(m_N, m_a, s, t)}{\mathscr{H}(m_N, m_p, s, t)} \frac{d\sigma_{\gamma N \to PN}^{\text{elastic}}}{dt}$$

at the forward region

data-driven signal normalization (cancel form-factor and flux dependence)







 $-\frac{4\pi\alpha_{s}c_{g}}{\Lambda}a\,G^{\mu\nu}\tilde{G}_{\mu\nu}$ 

 $F_a = |\Lambda/(32\pi^2 c_g)|$ 







#### ALP gluons coupling $-\frac{4\pi\alpha_s c_g}{\Lambda} a \, G^{\mu\nu} \tilde{G}_{\mu\nu}$ $F_a = |\Lambda/(32\pi^2 c_g)|$ GlueX **KOTO** $V^*$ $K_I \rightarrow \pi^0 a \rightarrow 4\gamma$ *p* traget p $\mathcal{D}$ $10^{-2}$ what if ALP can decay hadronically? $c_g \,/\, \Lambda \, \, [{ m GeV}^{-1}]$ $(m_a > 3m_{\pi})$ 10<sup>3</sup> GLUEX 3 [1701.08123] $[\operatorname{GeV}]_{a}$ $10^{-3}$ kaon decays NA62[2 KOTO[4<sub>2</sub> 10 GLUEX (expected with 1/fb) 10-0.1 0.2 0.3 0.4 50 10 200 250 350 100 150 300 400 $m_a$ [MeV] $m_a$ [GeV]

 $\gamma\gamma$  final state

Gori, Perez, Tobioka - 2005.05170

 $-\frac{4\pi\alpha_s c_g}{\Lambda} a \, G^{\mu\nu} \tilde{G}_{\mu\nu}$ 

How to estimate hadronic rates for ALPs with QCD scale mass?

 $-\frac{4\pi\alpha_s c_g}{\Lambda} a \, G^{\mu\nu} \tilde{G}_{\mu\nu}$ 

How to estimate hadronic rates for ALPs with QCD scale mass?



 $-\frac{4\pi\alpha_s c_g}{\Lambda} a \, G^{\mu\nu} \tilde{G}_{\mu\nu}$ 

How to estimate hadronic rates for ALPs with QCD scale mass?

| $m_a \lesssim \text{GeV}$ | 2222       | $m_a \gtrsim 2 \mathrm{GeV}$ |
|---------------------------|------------|------------------------------|
| chiral PT                 |            | pQCD                         |
|                           | use data!! |                              |

#### ALP gluons coupling $\frac{4\pi\alpha_s c_g}{\Lambda} a \, G^{\mu\nu} \tilde{G}_{\mu\nu}$ How to estimate hadronic rates for ALPs with QCD scale mass? $m_a \gtrsim 2 \,\mathrm{GeV}$ $m_a \lesssim \text{GeV}$ ????? chiral PT use data!!



information on specific  $U(3)_{\text{flavor}}$  combinations

#### ALP gluons coupling $\frac{4\pi\alpha_s c_g}{\Lambda} a \, G^{\mu\nu} \tilde{G}_{\mu\nu}$ How to estimate hadronic rates for ALPs with QCD scale mass? $m_a \gtrsim 2 \,\mathrm{GeV}$ $m_a \lesssim \text{GeV}$ ????? chiral PT use data!! information on specific $e^+e^- \rightarrow hadrons$ $U(3)_{\text{flavor}}$ combinations

directly deduce the hadronic rates of vectors



 $-\frac{4\pi\alpha_s c_g}{\Lambda} a \, G^{\mu\nu} \tilde{G}_{\mu\nu}$ 

ALPs hadronic rates?





ALPs hadronic rates?



$$\mathscr{A}(V_1 \to V_2 P) = \epsilon_{\mu\nu\alpha\beta} \epsilon_1^{\mu} \epsilon_2^{*\nu} p_1^{\alpha} p_2^{\beta} \mathscr{F}(p_1^2, p_2^2, q^2) \times \frac{3g^2}{4\pi^2 f_{\pi}} \langle V_1 V_2 P \rangle$$

one Lorentz structure

modified VMD









#### aWW and rare Kaon decays

 $-\frac{g_{aW}}{4}aW_{\mu\nu}\tilde{W}^{\mu\nu}$ 



 $K \rightarrow \pi a$  by the SM FCNC loop



#### aWW and rare Kaon decays





 $K \rightarrow \pi a$  by the SM FCNC loop





Izaguirre, Lin, Shuve - 1611.09355

#### aWW and rare Kaon decays





 $K \rightarrow \pi a$  by the SM FCNC loop



KOTO:  $K_L \rightarrow \pi^0 a \rightarrow 4\gamma$ 



Izaguirre, Lin, Shuve - 1611.09355



Gori, Perez, Tobioka - 2005.05170

#### higher ALP masses

heavy ion collisions at the LHC



Existing constraints from JHEP 1712 (2017) 044



#### higher ALP masses



 $\gamma\gamma$  resonance at the LHC





Mariotti, Redigolo, Sala, Tobioka - 1710.01743 Vidal, Mariotti, Redigolo, Sala, Tobioka - 1810.09452

#### higher ALP masses



Pb Ze Pb

Existing constraints from JHEP 1712 (2017) 044



 $\gamma\gamma$  resonance at the LHC



Mariotti, Redigolo, Sala, Tobioka - 1710.01743 Vidal, Mariotti, Redigolo, Sala, Tobioka - 1810.09452 Probing ALPs and the Axiverse with Superconducting Radiofrequency Cavities

Bogorad, Hook, Kahn, YS - 1902.01418

#### the idea

probing off-shell ALPs via non-linear QED in a cavity



 $\propto (F^{\mu\nu}\tilde{F}_{\mu\nu})^2 \propto (E \cdot B)^2$ non-linear Maxwell equations

#### the idea

probing off-shell ALPs via non-linear QED in a cavity



#### the idea

probing off-shell ALPs via non-linear QED in a cavity



advantages:

probes large range of masses - broadband
does not rely on ALP been dark matter

#### the Euler Heisenberg effect



never been measured below the electron mass!

measured at measured at high energies (light by light scattering) ATLAS, 2017

#### the Euler Heisenberg effect



never been measured below the electron mass!

measured at measured at high energies (light by light scattering) ATLAS, 2017

**ALP vs EH** 
$$\frac{c_{\gamma}/\Lambda}{m_a} \gtrsim \mathcal{O}(1) \times \frac{\alpha}{m_e^2} \simeq \frac{10^{-10} \,\text{GeV}^{-1}}{10^{-6} \,\text{eV}}$$
 comparable to the current limit on ALPs (by CAST) Evans and Rafelski, 1810.06717

#### the Euler Heisenberg effect



never been measured below the electron mass!

measured at measured at high energies (light by light scattering) ATLAS, 2017

**ALP vs EH** 
$$\frac{c_{\gamma}/\Lambda}{m_a} \gtrsim \mathcal{O}(1) \times \frac{\alpha}{m_e^2} \simeq \frac{10^{-10} \,\text{GeV}^{-1}}{10^{-6} \,\text{eV}}$$
 comparable to the current limit on ALPs (by CAST) Evans and Rafelski, 1810.06717 Evans and Rafelski, 1810.06717

#### detecting the EH effect by superconducting radiofrequency cavities



$$\frac{c_{\gamma}}{\Lambda} = \begin{cases} \left(\frac{4TL}{Q_s V E_0^6 K_0^2} \sqrt{\frac{B}{t}} \text{SNR}\right)^{1/4} \omega_s & m_a \ll \omega_s \\ \left(\frac{4TL}{Q_s V E_0^6 K_\infty^2} \sqrt{\frac{B}{t}} \text{SNR}\right)^{1/4} m_a & m_a \gg \omega_s \\ \text{SNR} = 5 \end{cases}$$

![](_page_52_Figure_2.jpeg)

$$\frac{c_{\gamma}}{\Lambda} = \begin{cases} \left(\frac{4TL}{Q_s V E_0^6 K_0^2} \sqrt{\frac{B}{t}} \text{SNR}\right)^{1/4} \omega_s & m_a \ll \omega_s \\ \left(\frac{4TL}{Q_s V E_0^6 K_\infty^2} \sqrt{\frac{B}{t}} \text{SNR}\right)^{1/4} m_a & m_a \gg \omega_s \\ \text{SNR} = 5 \end{cases}$$

$$a \bigvee \mathbf{E}_{1}e^{i\omega_{1}t} + \mathbf{E}_{2}e^{i\omega_{2}t} \\ \mathbf{B}_{1}e^{i\omega_{1}t} + \mathbf{B}_{2}e^{i\omega_{2}t} \\ \mathbf{L}$$

 $a = 0.5 \text{ m}, d = 1.56 \text{ m}, V = 1.23 \text{ m}^3$   $\omega_1 = \text{TE}_{011}, \omega_2 = \text{TM}_{010}, \omega_s = \text{TM}_{020}$   $\omega_s/(2\pi) = 527 \text{ MHz}$   $K_0 = 0.4, K_\infty = 0.18$  $E_0 = 45 \text{ MV/m}$  T = 1.5 K

$$\frac{c_{\gamma}}{\Lambda} = \begin{cases} \left(\frac{4TL}{Q_s V E_0^6 K_0^2} \sqrt{\frac{B}{t}} \mathrm{SNR}\right)^{1/4} \omega_s & m_a \ll \omega_s \\ \left(\frac{4TL}{Q_s V E_0^6 K_\infty^2} \sqrt{\frac{B}{t}} \mathrm{SNR}\right)^{1/4} m_a & m_a \gg \omega_s \\ \mathrm{SNR} = \end{cases}$$

![](_page_54_Figure_2.jpeg)

![](_page_54_Figure_3.jpeg)

$$a = 0.5 \text{ m}, d = 1.56 \text{ m}, V = 1.23 \text{ m}^3$$
  
 $_1 = \text{TE}_{011}, \omega_2 = \text{TM}_{010}, \omega_s = \text{TM}_{020}$   
 $\omega_s/(2\pi) = 527 \text{ MHz}$   
 $K_0 = 0.4, K_\infty = 0.18$   
 $E_0 = 45 \text{ MV/m}$   $T = 1.5 \text{ K}$ 

$$\frac{c_{\gamma}}{\Lambda} = \begin{cases} \left(\frac{4TL}{Q_s V E_0^6 K_0^2} \sqrt{\frac{B}{t}} \mathrm{SNR}\right)^{1/4} \omega_s & m_a \ll \omega_s \\ \left(\frac{4TL}{Q_s V E_0^6 K_\infty^2} \sqrt{\frac{B}{t}} \mathrm{SNR}\right)^{1/4} m_a & m_a \gg \omega_s \\ \mathrm{SNR} = \end{cases}$$

![](_page_55_Figure_2.jpeg)

![](_page_55_Figure_3.jpeg)

### Outlook

- on tape PrimEx data can improve the sensitive to ALP with QCD mass scale, future GlueX data will improve it by order of magnitude
- ALPs hadronic rates can be estimated from data
- future rare kaon decay is a promising channel to probe ALPs
- \* higher ALPs masses can be probed by LHC searches (heavy ion/ $\gamma\gamma$  resonances)

Backups

#### ALP and LFV

![](_page_58_Figure_1.jpeg)

Calibbi, Redigolo, Ziegler, Zupan - 2006.04795 and Cornella, Praradisi, Sumensari - 1911.06279

![](_page_59_Figure_0.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_60_Figure_1.jpeg)

Izaguirre, Lin, Shuve - 1611.09355

![](_page_62_Figure_1.jpeg)

![](_page_63_Figure_1.jpeg)

#### signal-to-noise ratio (SNR) (Dicke radiometer equation)

![](_page_63_Figure_3.jpeg)

### Overlap

![](_page_64_Figure_1.jpeg)

### Cavity vs LSW

![](_page_65_Figure_1.jpeg)

$$\text{SNR} = \frac{P_s}{T} \sqrt{\frac{t}{B}} \approx \frac{N_s}{N_{\text{th}}} \frac{1}{2 L Q_s} \sqrt{\frac{t}{B}}$$

#### the cavity in practice at Fermilab

![](_page_66_Figure_1.jpeg)

![](_page_66_Figure_2.jpeg)

#### **Disentangling EH and ALPs**

Proof of concept with rectangular cavity

pump 3 modes:

$$E_p = r_1 E_1 + r_{1'} E_{1'} + r_2 E_2$$
$$TE_{221} / TM_{221} / TM_{121}$$

signal mode: TM<sub>163</sub>

matching condition  $\omega_s = 2\omega_1 - \omega_2$ 

![](_page_67_Figure_6.jpeg)

$$K_{\infty} = 0.047r_2(r_1^2 - 0.18r_{1'}^2)$$
$$K_{\rm EH} = 0.059r_2(r_1^2 - 8.24r_{1'}^2)$$

$$\mathcal{H}(m_N, m_a, s, t) \equiv 128\pi \frac{m_N^4}{m_a^3} \frac{m_a^2 t(m_N^2 + s) - m_a^4 m_N^2 - t((s - m_N^2)^2 + st)}{t^2 (s - m_N^2)^2 (t - 4m_N^2)^2}$$