
ECHEP Analysis 
Area Update
2020.04.20

Eduardo Rodrigues, Luke Kreczko

1



The HEP analysis stack

2



HEP Analysis Stack

As any other HEP software area, analysis software and related 
issues cannot be viewed in isolation

● Researchers develop/reuse algorithms and implement 

them to their best programming ability

● Implementations might be based on experiment 

frameworks, analysis group specific software or general 

HEP tools

● Access to distributed computing might involve custom 

interfaces (e.g. researcher written bash or python scripts)

● Access to computing controlled via middleware

● Computing infrastructure is distributed and very 

heterogeneous

3

Researcher algorithms and 
implementations

Custom interface to 
distributed computing

distributed computing middleware

Computing infrastructure

Experiment/analysis 
group/HEP software



HEP Analysis Stack - Many possibilities for inefficiencies or 
failures

4

Researcher algorithms and 
implementations

Custom interface to 
distributed computing

distributed computing middleware

Computing infrastructure

Experiment/analysis 
group/HEP software

Algorithms or 
implementations can 
be wrong

implementations can 
be inefficient

Very little known 
about analysis group 
software

can be inefficient: 
Merging outputs is a 
good example

very heterogeneous:
how to best run algorithm given 
the hardware?

unaware of algorithms 
and workflows

Are there “allowed failures”?

Software generally 
limited in scope - 
Could be experiment 
agnostic

Uses a lot of human 
resources for creation, 
optimization and debugging



How can we address the 
issues?

(and where does ECHEP fit it)

5



Possible ECHEP working items (in green)

6

Researcher algorithms and 
implementations

Custom interface to 
distributed computing

Experiment/analysis 
group/HEP software

algorithms

implementations

Declarative Analysis
Researchers

Training in expressing algorithms in a 
“numpy/declarative way”

Experts (e.g. Research 
Software Engineers

E.g FAST-HEP

implementations 

can be inefficient

Many data access patterns 
(multiple trees, non-aligned 
data) not fully covered

Algorithm library 
backed by Open Data

feedback

Training for researchers and 
experts on HEP Software (e.g. 
awkward-array)



Possible ECHEP working items (in green)

7

Researcher algorithms and 
implementations

Custom interface to 
distributed computing

Experiment/analysis 
group/HEP software

Experiment software

HEP software

Usually run many tests & code 
review

Uproot (IRIS-HEP) and other tools 
provide a good ecosystem built 
upon data science standards

Can we automate (enforce) some 
of this for analysis groups?

CI templates,  
validation tools (e.g. 
scikit-validate) as a 
service?

Algorithms or 
implementations can be 
wrong

Algorithm library 
backed by Open Data

monitor

feedback



Possible ECHEP working items (in green)

8

Researcher algorithms and 
implementations

Custom interface to 
distributed computing

Experiment/analysis 
group/HEP software

HEP software
Access to variety of data science 
software: e.g Parsl (thus various 
batch systems), Spark & Dask via 
coffea

Do we need a grid 
equivalent?

Is there a way to make sure we 
monitor performance?

Can we construct a compute & workflow graph to 
optimize for architecture/infrastructure?



Possible ECHEP working items (in green)

9

distributed computing middleware

Computing infrastructure

Slurm, HTCondor, Son of 
GridEngine, Hadoop & 
more covered in HEP 
software

DIRAC (UK specific?) - an 
opportunity for smaller 
experiments (e.g. as Parsl 
backend)?

Analysis facilities (HSF, IRIS-HEP, etc): 
lots of R&D done

Any conclusions for the UK? How 
does it fit with UK programmes (e.g. 
GridPP)

Is it possible to optimize workflows 
given a specific computing 
infrastructure (e.g. specify allowed 
failures, optimize job splitting for given 
infrastructure parameters)?

Algorithm library 
backed by Open Data

https://indico.cern.ch/event/896935/


Training needs

10

Trends
● Python at least as popular as C++, if not more already now in 2020 (cf. CMS and LHCb surveys)
● Declarative approaches as a means to improve compute efficiency (optimisations can be done behind the 

scenes, professionally)
● More query-style and interactive analysis (largely via notebooks)
● Machine learning and AI permeate everything

Ongoing efforts
● HSF PyHEP workshops
● HSF/IRIS-HEP training activities such as the HEP Software Carpentry (SC) workshops (1st event)

What can the UK do?
● Certainly tag along and contribute and/or drive some of these efforts

○ The case already in certain cases - PyHEP organisation, SC organisation and tutors
● Organise UK versions in the future - the community is large enough for that

○ Need to be cross-experiments, clearly
● Nobody seems to be organising beginners-type ML training events (IML more for experts, exception: MLHEP).

UK community could organise some sort of AI/ML SC type of workshops and/or engage strongly with MLHEP

https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://indico.cern.ch/event/834411/
https://indico.cern.ch/event/768915/


Analysis stack 
summary

11

Researcher algorithms

distributed computing middleware

Computing infrastructure

Experiment 
software HEP software

Expert (optimized) 
implementations

If the aim is to maximize resource savings AND physics 

outputs, we need to look at the whole stack

● Benchmarks (Algorithm library backed by Open Data) is 

a crucial step to synchronize requirements throughout 

the stack* 

● Opportunity to improve data analysis methodology 

while building upon existing efforts (HSF, IRIS-HEP)

● Communication pathways might be needed (e.g. 

researchers/experts <-> computing infrastructure)

● Training at both beginner and export levels is necessary 

to make any kind of transition

*Can also help to reduce unintended side effects across HEP software (e.g. ROOT 6.20 nested-namespace slowdown)



Backup slides

12



CMS analysis job failures (30% failure rate)

13

Can we add 
“checkpointing”?30% failure rate

Avg. 2 hour 
badput



If we do not teach researchers how to code, 
won’t we lack experts?

14

Researcher algorithms Researcher (expert-guided) 
implementations

Easy start, natural progression - training at undergrad, 
postgrad, research associate level is always crucial

Developing 
new 
analysis 
methods

Expert (optimized) 
implementations

Experts optimize or researchers 
become experts through training



Why switching to Data science tools can be good

15



Computations/workflow graph example

16



Many possibilities for inefficiencies or failures

● Algorithms or implementations can be wrong

● Implementations and custom interfaces to distributed 

computing can be inefficient

○ Merging outputs is a good example

○ Uses a lot of human resources for creation, 

optimization and debugging

● Software generally limited in scope

○ Could be experiment agnostic

● (very heterogeneous) Computing infrastructure is 

unaware of algorithms and workflows

HEP Analysis Stack

17

Researcher algorithms and 
implementations

Custom interface to 
distributed computing

distributed computing middleware

Computing infrastructure

Experiment/analysis 
group/HEP software


