
ECHEP UK progress meeting

simpleNN

Manuel Schiller

University of Glasgow

April 20th, 2020

M. Schiller (Glasgow) simpleNN April 20th, 2020 1 / 9



FT recap

recap: Flavour Tagging at LHCb

sk
et

ch
:
Ju

lia
n

W
is
ha

hi

for many LHCb analyses, need to know flavour of 𝐵 at production

Flavour tagging algorithms try to determine production flavour
using MVA solutions

new development: inclusive Flavour Tagging (give “whole event” to
MVA) to improve tagging

M. Schiller (Glasgow) simpleNN April 20th, 2020 2 / 9



inclusive FT

inclusive Flavour Tagging

data

tracks

features

recursive NN

feed features
track by track

tagging decision

idea: give full information to tagging (all tracks)

about 20 features per track (momentum, projection on B flight
vector, PID, …)
production prototype is being developed:

development and training happens with keras
needs to be fast: code will have to run in LHCb software trigger
evaluating NN quickly therefore crucial
first stop: LWTNN
(can evaluate NN in compiled C++)

M. Schiller (Glasgow) simpleNN April 20th, 2020 3 / 9

https://github.com/lwtnn/lwtnn


LWTNN

benchmark

simple recursive NN test case (GRU):
5 “tracks” of 3 features each
4 outputs

method: try evaluating the NN 1024 times for all 5 sets of features

use valgrind to benchmark

LWTNN: spends about half its time in dynamic memory
management (malloc/free)

also big chunk in std::exp

M. Schiller (Glasgow) simpleNN April 20th, 2020 4 / 9



simpleNN

can we do better?

by the time we compile code, we know structure of NN
run-time loadable NN structures not needed
allocate feature vectors statically or on stack
convert keras NN structure to C++ with code generator
thus avoid many run-time checks, virtual function calls, etc.

→ no need for dynamic behaviour!

start implementing simpleNN

M. Schiller (Glasgow) simpleNN April 20th, 2020 5 / 9

https://gitlab.cern.ch/mschille/simplenn


simpleNN

simpleNN: first benchmark

LWTNN simpleNN

LWTNN: initialisation 3 Mcycles, 1024 evaluations 37.9 Mcycles

simpleNN: initialisation 16.1 kcycles, 1024 evaluations 8.5 Mcycles

M. Schiller (Glasgow) simpleNN April 20th, 2020 6 / 9



simpleNN

simpleNN: more realistic benchmark

10 20 30 40 50
nfeatures

200

300

400

500

600

M
icr

os
ec

on
ds

SimpleNN
LWTNN

pl
ot

:
V
.J

ev
ti
c

30 internal nodes, 18 input features, 2 dense layers followed by 2
GRU layers
compile on Core i5-5257U CPU, compiler flags -O2 -march=native

clearly, LWTNN does something much better!
after a bit of debugging: LWTNN uses Eigen, which uses vectorises
matrix-vector products in the dense layers

M. Schiller (Glasgow) simpleNN April 20th, 2020 7 / 9



simpleNN

simpleNN: more realistic benchmark, fixed

10 20 30 40 50
Number of features

0

20

40

60

80

100

Ti
m

e 
pe

r F
T 

de
cis

io
n 

/ 
s

Testing with 30 Tracks, 32 hidden nodes

SimpleNN
LWTNN

20 40 60 80 100
Number of Tracks

0

50

100

150

200

250

300

350

Ti
m

e 
pe

r F
T 

de
cis

io
n 

/ 
s

Testing with 18 features, 32 hidden nodes
SimpleNN
LWTNN

pl
ot

:
V
.J

ev
ti
c

fix simpleNN’s matrix-vector multiplication in the dense layers:
force compiler to autovectorise the matrix-vector product

simpleNN now factor 2 faster (malloc/free, remember?)

interesting for use elsewhere?

M. Schiller (Glasgow) simpleNN April 20th, 2020 8 / 9



conclusion

conclusion, next steps

can do better than LWTNN
faster code through

code generation
(auto-)vectorisation (by the compiler) of matrix-vector multiplication
for normal matrix sizes, about as fast as Eigen (used by LWTNN)!
links:

the competition: LWTNN
simpleNN
code generator to convert keras NN structure/weights to C++:
rnngenerator (V. Jevtic)

next steps
make benchmarking code part of simpleNN
allow vectorized interface (i.e. vectors of features produce vector of
outputs)
can we do something faster for std::exp/std::tanh/…that vectorises
well?

M. Schiller (Glasgow) simpleNN April 20th, 2020 9 / 9

https://github.com/lwtnn/lwtnn
https://gitlab.cern.ch/mschille/simplenn
https://gitlab.cern.ch/vjevtic/rnngenerator

	
	introduction
	FT recap
	inclusive FT
	LWTNN
	simpleNN
	conclusion

