ECHEP UK progress meeting

simpleNN

Manuel Schiller

University of Glasgow

April 20th, 2020

M. Schiller (Glasgow) simpleNN

April 20th, 2020

170 ik



FT recap

recap: Flavour Tagging at LHCb

SS Pion
SS Kaon Signal Decay
PV SS Kaon NNet
P SS Proton
< SS Pion BDT —
oa a—>
B ) S
) / K
a® ¥
| o / Same Side
. N Opposite Side
® . P /_/). 0S Kaon
= PN /V‘;\c =5 0S K. NNet
v —c Y —

v

\b— X17/

08 Vertex Charge\L. 0S Muon
0S Charm 0OS Electron

m for many LHCb analyses, need to know flavour of B at production

sketch: Julian Wishahi

m Flavour tagging algorithms try to determine production flavour
using MVA solutions

m new development: inclusive Flavour Tagging (give “whole event” to
MVA) to improve tagging

M. Schiller (Glasgow) simpleNN April 20th, 2020 2/9 %



inclusive FT

inclusive Flavour Tagging

feed features
track by track

recursive NN

dat features
ata tagging decision

m idea: give full information to tagging (all tracks)
m about 20 features per track (momentum, projection on B flight

vector, PID, ...)
m production prototype is being developed:

m development and training happens with keras
m needs to be fast: code will have to run in LHCb software trigger
m evaluating NN quickly therefore crucial
m first stop: LWTNN
(can evaluate NN in compiled C++)

M. Schiller (Glasgow) simpleNN April 20th, 2020 3/9 %



https://github.com/lwtnn/lwtnn

benchmark

m simple recursive NN test case (GRU):

m 5 “tracks” of 3 features each
m 4 outputs

m method: try evaluating the NN 1024 times for all 5 sets of features
m use valgrind to benchmark

m LWTNN: spends about half its time in dynamic memory
management (malloc/free)

m also big chunk in std::exp

M. Schiller (Glasgow) simpleNN April 20th, 2020 4/9 W‘i



simpleNN

can we do better?

m by the time we compile code, we know structure of NN

m run-time loadable NN structures not needed

m allocate feature vectors statically or on stack

m convert keras NN structure to C++ with code generator

m thus avoid many run-time checks, virtual function calls, etc.

— no need for dynamic behaviour!
m start implementing simpleNN

M. Schiller (Glasgow) simpleNN April 20th, 2020 5/9 %


https://gitlab.cern.ch/mschille/simplenn

simpleNN

simpleNN: first benchmark

simpleNN

m LWTNN: initialisation 3 Mcycles, 1024 evaluations 37.9 Mcycles
m simpleNN: initialisation 16.1 kcycles, 1024 evaluations 8.5 Mcycles

M. Schiller (Glasgow) simpleNN April 20th, 2020 6/9 %



simpleNN

simpleNN: more realistic benchmark

plot: V. Jevtic

m 30 internal nodes, 18 input features, 2 dense layers followed by 2
GRU layers

m compile on Core i5-5257U CPU, compiler flags -02 -march=native

m clearly, LWTNN does something much better!

m after a bit of debugging: LWTNN uses Eigen, which uses vectorises
matrix-vector products in the dense layers

M. Schiller (Glasgow) simpleNN April 20th, 2020 7/9 %




simpleNN

simpleNN: more realistic benchmark, fixed

Testing with 30 Tracks, 32 hidden nodes Testing with 18 features, 32 hidden nodes

3507 o~ SimpleNN
—e— LWTNN

Time per FT decision / us

5 2 2 g

& g 8 g
Time per FT decision / us

g

8

3

—e— SimpleNN
—— LWTNN

°
°

a0 50 20 40 60 80 100

10 20 30
Number of features Number of Tracks

plot: V. Jevtic

m fix simpleNN’s matrix-vector multiplication in the dense layers:
force compiler to autovectorise the matrix-vector product

m simpleNN now factor 2 faster (malloc/free, remember?)
m interesting for use elsewhere?

M. Schiller (Glasgow) simpleNN April 20th, 2020 8/9 %



conclusion

conclusion, next steps

m can do better than LWTNN
m faster code through

m code generation
m (auto-)vectorisation (by the compiler) of matrix-vector multiplication
for normal matrix sizes, about as fast as Eigen (used by LWTNN)!
m links:
B the competition: LWTNN
m simpleNN
B code generator to convert keras NN structure/weights to C++:
rnngenerator (V. Jevtic)

B next steps
m make benchmarking code part of simpleNN
m allow vectorized interface (i.e. vectors of features produce vector of
outputs)
m can we do something faster for std::exp/std::tanh/...that vectorises
well?

M. Schiller (Glasgow) simpleNN April 20th, 2020 9/9 %


https://github.com/lwtnn/lwtnn
https://gitlab.cern.ch/mschille/simplenn
https://gitlab.cern.ch/vjevtic/rnngenerator

	
	introduction
	FT recap
	inclusive FT
	LWTNN
	simpleNN
	conclusion

