Flavor Physics

Yuval Grossman

Cornell

Y. Grossman

Flavor Physics

Status of flavor physics

Y. Grossman

Flavor Physics

invisibles, May 31, 2021 $\,$ p. 2 $\,$

The goals of flavor physics (1)

Finding hints for BSM physics

Y. Grossman

Flavor Physics

The goals of flavor physics (2)

The weak/strong interplay

- Traditional: Overcome QCD to probe the weak interaction
 - Eliminate or calculate QCD parameters
- New: Use the weak interaction to probe QCD
 - Measure QCD parameters

B physics

Flavor Physics

B Physics

- B physics is not a teenager anymore
- What next?
 - Anomalies
 - The future is bright: more data with clean modes
 - Theory developments are keep coming

Higher order SU(3) sum rules

- Use the approximate symmetries of QCD
 - Isospin: u d
 - **SU(3)**: u − d − s
 - U-spin: d-s
- Isospin is very useful as the breaking is of O(1%)
- SU(3), or just U-spin, is useful but it comes with large breaking of O(20%)
- We can use SU(3) to
 - Estimate isospin breaking effects
 - Get rough predictions
 - Get precise predictions when we used relations that hold to higher order in SU(3) breaking

All order U-spin sum rules

M. Gavrilova, YG, S. Schacht, in preparation

- We show how to get U-spin sum rules in any system without the need to decompose the amplitudes
- The system is mapped into a multi-dimensional geometrical lattice
- Sum rules that are valid to order b correspond to b dimensional subspaces
 - point: leading order
 - line: first order
 - plane: second order
- It is not clear, however, how useful it is in practice

Charm physics

Flavor Physics

The birth of charm CPV

Born in 2019, Charm CPV is a two years old baby

What is next for charm CPV?

- We can learn about QCD from charm
- We have SU(3)-based rough SM predictions to test

Kagan, Silvestrini, arXiv:2001.07207

YG et al. in preparation

Y. Grossman

Flavor Physics

The small parameters for charm

We can estimate all the parameters in charm in terms of the following small parameters

- Non-unitarity of the 2×2 CKM: $\varepsilon_{\rm NU} \sim 10^{-3}$
- SU(3) breaking: $\varepsilon_{\rm SU(3)} \sim 0.2$
- The Wolfenstein parameter of the CKM: $\lambda \sim 0.2$
- For example [$x \sim \Delta m$, $y \sim \Delta \Gamma$]
 - Theory: $x_{\rm th} \sim y_{\rm th} \sim \lambda^2 \varepsilon_{{\rm SU}(3)}^2 \sim 0.2\%$
 - Experiment: $x_{\rm ex} \sim y_{\rm ex} \sim 0.5\%$

Flavor Physics

There is a pattern

$$a_f \equiv \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} \approx a_f^d + a^m + a_f^i$$

1. a_f^d . For SCS

$$a_f^d \sim \varepsilon_{\rm NU} \times O(1)_f \sim 10^{-3}$$

2. a^m . Universal

$$a^m \sim y \, \frac{\varepsilon_{\rm NU}}{\varepsilon_{\rm SU(3)}} \sim \varepsilon_{\rm NU} \times \varepsilon_{\rm SU(3)} \sim 10^{-4}$$

3. a_f^i . Approximate universality

$$a_f^i \sim x \, \frac{\varepsilon_{\rm NU}}{\varepsilon_{\rm SU(3)}} \times \left[1 + O(\varepsilon_{\rm SU(3)})_f\right] \sim 10^{-4} \pm 10^{-5}$$

Y. Grossman

Flavor Physics

Kaon physics

Flavor Physics

Kaon Physics

- Kaon CPV was "born" in 1964
- Mature, but clearly not retired yet
- NA62 and KOTO look for the clean $K \to \pi \nu \bar{\nu}$ modes
- What about $K \to \mu \mu$?

Y. Grossman

Flavor Physics

 $K \to \mu \mu$

- Rare FCNC decay
- It was very important in developing the SM: the GIM mechanism
- The K_L rate was measured, while LHCb is looking for the K_S rate

$$\mathcal{B}(K_L \to \mu\mu) \approx 7 \times 10^{-9} \qquad \mathcal{B}(K_S \to \mu\mu) \sim 5 \times 10^{-12}$$

Can we get a clean theoretical information from it?

 $K \to \mu \mu$

G. D'Ambrosio, T. Kitahara, 1707.06999

A. Dery, M. Ghosh, YG, S. Schacht, 2104.06427

Can we get a clean theoretical information from it?

- By exploiting the interference term we can get a clean information regarding CPV
- We can measure $\mathcal{I}m(V_{td}V_{ts}^*)$, which is the same parameter that we can get from $K_L \to \pi \nu \overline{\nu}$
- \checkmark Theoretical uncertainties below 1%

Y. Grossman

Flavor Physics

invisibles, May 31, 2021 $\,$ p. 16 $\,$

Conclusion

Flavor Physics

What next for flavor?

Y. Grossman

Flavor Physics