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Neutrinos at the LHC



Neutrinos at the LHC
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Neutrinos detected from many sources, but not from colliders.

But there is a huge flux of neutrinos in the forward direction, mainly from
1, Kand D meson decay.

ATLAS provides an intense and strongly collimated beam of TeV-energy neutrinos
along beam collision axis.




Neutrinos at the LHC
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In 2018, the FASER collaboration placed ~30 kg pilot
emulsion detectors in TI18 for a few weeks. O(10)
neutrino interactions expected

First neutrino interaction candidates were recently reported.



https://arxiv.org/abs/2105.06197

Neutrinos at the LHC
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During Run 3 of the LHC, two new experiments will detect LHC neutrinos. FASERv:
1000 neutrinos, 10000 muon neutrinos and 10 tau neutrino CC interactions.
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Neutrinos at the LHC
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FASER detector was successfully
installed into the TI12 tunnel in
March 2021

7
Vg, ',4/;;% £




Neutrinos at the LHC
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The proposal: create a Forward Physics Facility (FPF) for the HL-LHC to house a
suite of experiments. Two promising locations were identified.
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Neutrinos at the LHC

A suite of experiments were
proposed for the FPF.

FLArE
FORMOSA

We are currently writing a SND 2
physics potential summary. FASERv 2

You are welcome to join!
FASER 2

Snowmass LOI: https://zenodo.org/record/4059893
Kickoff Meeting: https://indico.cern.ch/event/955956/
2nd Workshop (last week): https://indico.cern.ch/event/1022352



https://zenodo.org/record/4059893
https://indico.cern.ch/event/955956/
https://indico.cern.ch/event/1022352

Neutrinos at the LHC

Neutrino experiments at the LHC will greatly enhance the LHC’s physics
potential for BSM physics searches, neutrino physics and QCD.

In this talk, | will highlight some exciting examples.
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Neutrino Physics



Neutrino Physics

The LHC neutrino beam is broad, with mean
energies around 1 TeV, exceeding the
energies of all other artificial neutrino sources.

It originates from a variety of sources: pion,

v, interacting spectrum, ®xE/GeV (a.u.)

kaon, hyperon and charm decays.

FASERV (~1ton, 150/fb):

1k ve, 10k vy, 10 vt interactions

FPF (~10ton, 3000/fb):

100k ve, 1M vy, 1k vT interactions
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Neutrino Physics

Due to the high energy, most interactions are described by DIS: vg — |1 g’

104

103
invariant mass of hadronic

system ~ hadronic system
particle multiplicity

5
[ 7]
=)
E
E
o
w
) 102 3 102
8=
. ] 1] :
DIS: O(10) particles in final £ ‘
©
state T 10,
s I
. 7 ] 10?
SIS: transition between L -
. SIS
resonance productionto DIS € 1
& : Elastic
2 ]
- 10_1 figlufel ?I?E?ineld ':Jslilrllgllllpytr!ialsl LELLLALL T T T T TTTTTT 100
10-1 - 10 102 10° 10*

Momentum Transfer Q2 [GeV?]

typical momentum transfer |Q| ~ 10GeV



Neutrino Physics

Using LHC neutrinos, one can measure neutrino cross section at unexplored TeV
energies for all three flavors. Both CC and NC are possible.
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FASERYv will detect ~10 tau neutrino interactions, which is similar to DONuT
and OPERA. Thousands of tau neutrino events possible at HL-LHC, allowing
for precision studies of tau neutrino properties.
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Neutrino Physics

more than 1k quasi-elastic and resonant events expected
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Neutrino Physics

Interactions of LHC neutrino can also be used to ‘
constrain SM EFT coefficients o= |
= Oscillations + COHERENT ‘
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QCD and Cosmic Rays



QCD and Cosmic Rays

Forward particle production is poorly constrained by other LHC experiments.
FASERV’s neutrinos flux measurements will provide novel complimentary
constraints that can be used to validate/improve MC generators.

We need to quantify and reduce these uncertainties.
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FIG. 5. Neutrino energy spectrum for electron neutrinos (left) and muon neutrinos (right) passing through
FASERv. The vertical axis shows the number of neutrinos per energy bin that go through the detector’s
cross sectional area for an integrated luminosity of 150 fb~!. We separate the different production modes:
pion decays (red), kaon decays (orange), hyperon decays (magenta) and charm decays (blue). The different
linestyles correspond to predictions obtained from different commonly used event generators.



QCD and Cosmic Rays

Electron neutrinos at high energy and tau neutrinos are mainly produced in
charm decays:gg—cc, c—D, D—-Klv

Neutrinos from charm decay could allow to test transition to small-x factorization,
constrain low-x gluon PDF, probe gluon saturation, and probe intrinsic charm.

Gluon PDF with Neutrinos from Charm Decay
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QCD and Cosmic Rays

Measuring forward charm production
at the LHC would help to constrain
the (currently very poorly constrained)
prompt atmospheric neutrino flux at
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Cosmic Ray experiments have reported an excess
in the number of muons over expectations
computed using extrapolations of hadronic

interaction models tuned to LHC data at the few o

level (muon problem in CR physics).

Measurements of forward hadron production
(kaons) at the LHC are crucial to solve this issue.
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QCD and Cosmic Rays

One can also use DIS neutrino scattering to probe (nuclear) PDFs:
shadowing, anti-shadowing, EMC effect for different nuclear targets

In particular, charm associated neutrino events (v s — | ¢) are sensitive to the poorly

constrained strange quark PDF, and can help to resolve existing tension between
different measurements.

Quark PDF with Neutrino DIS: quv—q'L
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BSM Physics



BSM Physics

Mediator
SM Sector - > Dark Sector

Simple Model: Dark Matter charged under U(1) D

€ 1
LD _iFWF‘/W - §m?4/A/2 = mix2 —igpA'x*
coupling to SM via small massive gauge boson: dark photon
mixing with SM photon dark photon couples to DM

Phenomenology depends on masses:

mA’ > 2mX : dark photon promptly decays in DM — LHC produces DM beam
mA’ < 2mX : dark photon can only decay to SM — A’ is long-lived
mA’ = 0 : dark matter becomes millicharged



BSM Physics - Dark Matter

DM Scattering in Neutrino Detector

A huge number of high-energy mesons
are produced in forward direction
(hadronization of beam remnants)

A’ produced via decays 10 — Ay
or A’ Bremsstrahlung pp — ppA

Prompt decay A— XX
produces DM beam

DM scatters on electrons: X e — X e.
Typical electron energy ~ 1-10 GeV

possible background: v e — v e with
typical electron energy ~ 0.1-1 TeV
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https://arxiv.org/abs/2101.10338

BSM Physics - LLPs

If mA’ < 2mX: A’ decays to SM particles — Long lived particle decays

searches for prompt di-electron resonance

Dark Photons l

lifetime ct ~ 1cm — decay length cty ~ 100m
A’ is longlived
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For details and many more models see 1811.12522.



https://arxiv.org/abs/2101.10338
https://arxiv.org/abs/1811.12522

BSM Physics: MCPs

If mA'=0: X is effectively milli-charged with Q=ge — search for minimum ionizing
particle with very small dE/dx

MilliQan was proposed as dedicated LHC experiment to search for MCPs near CMS.
But it was noted that sigal flux is ~100 times larger in forward direction.

LAr detector could in principle also look for MCPs (example: ArgoNeuT).

For details see
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MCPs are an example of strongly interacting DM.
Above DD bounds: DM absorbed in earth crust.
Popular model to explain EDGES anomaly.
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https://arxiv.org/abs/1607.04669
https://arxiv.org/abs/2010.07941

Summary

With FASER and SND@LHC, two new experiment will soon start to
perform neutrino measurements at the LHC.

They also paves the way for a forward search and neutrino program at the HL-LHC,
opening up many many new opportunities for neutrino physics, BSM physics searches
and QCD measurements, significantly extending the LHC’s physics program.

We would like to invite the Invisibles 2021 community to help us explore
and better understand the physics potential of this program.

We are currently writing a physics potential summary.
You are welcome to join!

y

contact me via felixk@slac.stanford.edu or
visit our workshop page https://indico.cern.ch/event/1022352
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