R-Parity Violating $0\nu\beta\beta$ **Decay with Light Neutralinos** Patrick D. Bolton¹, Frank F. Deppisch¹ and P. S. Bhupal Dev²

1 Introduction

In general, one can write down renormalisable terms in the supersymmetric (SUSY) superpotential that violate either lepton number (L) or baryon number (B), or so-called *R*-parity $(R_p = (-1)^{3B+L+2S})$, where *S* is the particle spin),

$$W_{\mathcal{R}_p} = \underbrace{\lambda \ LLE^c}_{\Delta L=1} + \underbrace{\lambda' \ LQD^c}_{\Delta L=1} + \underbrace{\lambda'' \ U^c D^c D^c}_{\Delta B=1},$$

where L, E^c , Q, U^c and D^c are chiral superfields containing the SM fermions and their scalar SUSY partners.

It has long been known that the $\Delta L = 1 \lambda'$ term contributes to neutrinoless double beta $(0\nu\beta\beta)$ decay with the exchange of either a **neutralino** $(\tilde{\chi}_i^0)$ or **gluino** (\tilde{g}) [1]. In the Minimal SUSY Standard Model (MSSM), the neutralinos are admixtures of the neutral fermionic SUSY partners of the $U(1)_Y$ and $SU(2)_L$ gauge bosons and Higgs doublets. The gluinos are the color-charged fermionic SUSY partners of the $SU(3)_c$ gluons.

It is usually assumed that the lightest neutralino is heavier than the average momentum exchange of $0\nu\beta\beta$ decay, i.e. $m_{\tilde{\chi}_1^0} \gg p_F \sim 100$ MeV. However, indirect collider bounds on the lightest neutralino can be evaded so that it can be very light or even massless [2]. The $0\nu\beta\beta$ decay process can therefore display short-range ($m_{\tilde{\chi}_1^0} \gg p_F$) or **long-range** $(m_{\tilde{\chi}_1^0} \ll p_F)$ behaviour.

2 RPV Contribution to $0\nu\beta\beta$ Decay

• For a heavy neutralino, the presence of the *R*-parity violating (RPV) coupling λ'_{111} results in the **dimension-9** Lagrangian

$$\mathcal{L}_9 = \frac{G_F^2 \cos^2 \theta_C}{2m_p} \left(\epsilon_1^{RRL} J_R J_R + \epsilon_2^{RRL} J_R^{\mu\nu} J_{R\mu\nu} \right) j_L + \text{h.c.}$$

where $j_L = \bar{e}(1 + \gamma_5) e^c$, $J_R = \bar{u}(1 + \gamma_5) d$ and $J_R^{\mu\nu} = \bar{u}\sigma^{\mu\nu}(1 + \gamma_5) d$ for $\sigma_{\mu\nu} = \frac{i}{2}[\gamma_{\mu}, \gamma_{\nu}]$, i.e. scalar and tensor quark currents [1].

The scalar and tensor coefficients can be decomposed as

$$\epsilon_1^{RRL} = \eta_{\tilde{\chi}} + \eta_{\tilde{\chi}\tilde{e}} + \eta_{\tilde{\chi}\tilde{f}} + \eta_{\tilde{g}} + \eta_{\tilde{g}}', \quad \epsilon_2^{RRL} = -\frac{1}{4} \left(\eta_{\tilde{\chi}} + \eta_{\tilde{\chi}\tilde{f}} + \eta_{\tilde{g}} + \eta_{\tilde{g}}' \right)$$

where the $(\eta_{\tilde{\chi}}, \eta_{\tilde{\chi}\tilde{e}}, \eta_{\tilde{\chi}\tilde{f}})$ and $(\eta_{\tilde{g}}, \eta'_{\tilde{g}})$ factors encode the contributions from neutralino and gluino exchange diagrams respectively, i.e.

The $0\nu\beta\beta$ decay half-life is then given by

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} \left| \boldsymbol{\epsilon}_1^{RRL} \mathcal{M}_1^{RR} + \boldsymbol{\epsilon}_2^{RRL} \mathcal{M}_2^{RR} \right|^2,$$

where $G_{0\nu}$ is a phase space factor and \mathcal{M}_1^{RR} , \mathcal{M}_2^{RR} are nuclear matrix elements.

QCD corrections induce an RGE running and mixing of the coefficients ϵ_1^{RRL} and ϵ_2^{RRL} from the scale of new physics $\Lambda_{NP} \sim 1$ TeV to the QCD scale $\Lambda_{QCD} \sim 1$ GeV [3].

Invisibles21 Workshop, Hunting Invisibles: Dark Sectors, Dark Matter and Neutrinos

University College London, Gower Street, London, UK, WC1E 6BT ² Washington University, St. Louis, MO 63130, USA

3 Collider Constraints and a Light Neutralino

- The factors $\eta_{\tilde{\chi}}, \eta_{\tilde{\chi}\tilde{e}}, \eta_{\tilde{\chi}\tilde{f}}, \eta_{\tilde{g}}$ and $\eta'_{\tilde{g}}$ depend on the selectron (\tilde{e}_L), up squark (\tilde{u}_L) , down squark (\tilde{d}_R) , neutralino and gluino masses.
- Collider experiments ATLAS and CMS have excluded portions of the SUSY partner mass parameter space via searches for e.g., $\tilde{e}_L \rightarrow e \tilde{\chi}_1^0$, $\tilde{q} \to q \tilde{\chi}_1^0$ and $\tilde{g} \to q \bar{q} \tilde{\chi}_1^0$ (missing E_T). Direct constraints on λ'_{111} can be made from measurements of V_{ud} and R_{π} .

4 Bounds on SUSY Parameter Space from $0\nu\beta\beta$ Decay and Other Experiments

• Lower limit on the $0\nu\beta\beta$ half-life $(T_{1/2}^{0\nu})_{exp}$ can be related to the RPV prediction. The resulting inequality can be rearranged for λ'_{111} ,

 $(T_{1/2}^{0\nu})_{\exp} < T_{1/2}^{0\nu} \implies \lambda_{111}' < F\left(m_{\tilde{\chi}_1^0}, m_{\tilde{e}_L}, m_{\tilde{u}_L}, m_{\tilde{d}_R}, m_{\tilde{g}}, (T_{1/2}^{0\nu})_{\exp}\right)$ i.e. an upper limit on λ'_{111} as a function of $(T^{0\nu}_{1/2})_{exp}$ and the SUSY masses.

- Parameter Scan: Perform scan of SUSY masses allowed by collider experiments, with absolute lower limit from phenomenological MSSM analyses \Rightarrow Find corresponding upper limit on λ'_{111} .
- ► Best $0\nu\beta\beta$ limits for $m_{\tilde{e}_L} = 700$ GeV (lower limit from ATLAS for $m_{\tilde{\chi}_1^0} = 0$ GeV) and $m_{\tilde{e}_L} = 90$ GeV (OPAL lower limit for $m_{\tilde{\chi}_1^0} > m_{\tilde{e}_L}$).
- Big Bang Nucleosynthesis (BBN): Naive limits by requiring the lifetime of the lightest neutralino be less than 1 second. Also depends on gravitino mass.
- $(g-2)_{\mu}$ anomaly has persisted at Fermilab g-2 experiment [6].
- For a neutralino and degenerate selectron and smuon, obtain

 $\Delta a_{\mu}^{\tilde{\chi}_{1}^{0}} \approx \frac{\alpha_{Y}}{6\pi} \frac{m_{\mu}^{2} \,\mu \tan \beta}{m_{z0}^{3}} G\left(\frac{m_{\tilde{e}_{L}}^{2}}{m_{z0}^{2}}\right)$

where G(x) is a loop function [5]. Defines a **favoured region** in $(m_{\tilde{\chi}_1^0}, m_{\tilde{e}_L})$ plane depending on MSSM parameters μ and $\tan \beta$.

(5) Conclusions

To conclude, we have performed a detailed study of the **RPV** contribution to $0\nu\beta\beta$ decay with an arbitrary mass lightest **neutralino** $\tilde{\chi}_1^0$. Previous studies have only considered neutralinos more massive than the average momentum exchange of $0\nu\beta\beta$ decay, $p_F \sim 100$ MeV. We made use of an interpolating function to encapsulate the change from short-range $(m_{\tilde{\chi}_1^0} \gg p_F)$ to long-range $(m_{\tilde{\chi}_1^0} \ll p_F)$ behaviour depending on the $\tilde{\chi}_1^0$ mass.

In deriving constraints on the RPV coupling λ'_{111} as a function of $m_{\tilde{\chi}^0_1}$, we performed a scan over the relevant SUSY masses allowed by collider constraints. We compared the $0\nu\beta\beta$ decay constraints to naive limits from BBN and the region favoured by the $(g-2)_{\mu}$ anomaly.

• To descibe the **long-range** behaviour of a light neutralino, we replace

a sterile neutrino N with mass m_N above or below p_F .

where $\langle \mathbf{p}^2 \rangle = 150$ MeV. A similar **interpolating** function can be used for

rences

[1] M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, Phys. Rev. D, 53:1329-1348 (1996).

[2] H. K. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A. M. Weber and G. Weiglein, Eur. Phys. J. C, 62:547-572 (2009).

[3] M. González, M. Hirsch and S. Kovalenko, Phys. Rev. D, 93(1):013017 (2016).

[4] G. Aad et al., Eur. Phys. J. C, 80(2):123 (2020).

[5] T. Moroi, Phys. Rev. D 56, 4424 (1997).

[6] B. Abi et. al., Phys. Rev. Lett., 126(14):141801 (2021).