

Lepton Flavor Violation in $b \to s \ell_i \ell_j$

Invisibles21 Workshop, May 31, 2021.

Based on D. Becirevic, S. Fajfer, F. Jaffredo and O.Sumensari (in preparation)

Motivations

• Hints of **Lepton Flavor Universality Violation** (LFUV) observed in B meson decays:

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})} \Big|_{q^{2} \in [1,6] \text{ GeV}^{2}} \quad R_{K^{*}}^{[0.042,1]} = \frac{\mathcal{B}(B \to K^{*}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{*}e^{+}e^{-})} \Big|_{q^{2} \in [0.042,1] \text{ GeV}^{2}}$$

- R_K , R_{K^*} and $B_s \to \ell_i \ell_j$ are all smaller than their SM prediction (3.1 σ for R_K alone).
- What model of NP can explain these B anomalies?

In most of the models $LFUV \Rightarrow LFV$?

EFT for $b \to s \ell_i \ell_i$

OPE at dimension 6:

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{a=9,10,\dots} \left(C_a^{ij}(\mu) \mathcal{O}_a^{ij}(\mu) + C_a^{ij'}(\mu) \mathcal{O}_a^{ij'}(\mu) \right) + \text{h.c.}$$

$$\mathcal{O}_{9}^{ij(')} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}_{i}\gamma^{\mu}\ell_{j}), \qquad \qquad \mathcal{O}_{10}^{ij(')} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}_{i}\gamma^{\mu}\gamma^{5}\ell_{j}),
\mathcal{O}_{S}^{ij(')} = (\bar{s}P_{R(L)}b)(\bar{\ell}_{i}\ell_{j}), \qquad \qquad \mathcal{O}_{P}^{ij(')} = (\bar{s}P_{R(L)}b)(\bar{\ell}_{i}\gamma^{5}\ell_{j}),$$

from quark to hadrons: **LQCD**

$$\langle H_i | \Gamma | H_f \rangle \propto f_0, f_+, f_\perp, g_0, g_+, g_\perp$$

•
$$B_S \rightarrow l_i l_j$$

•
$$B_s \to \phi l_i l_j$$

•
$$B \rightarrow K^{(*)} l_i l_j$$

•
$$B_S \rightarrow l_i l_j$$
 • $B \rightarrow K^{(*)} l_i l_j$
• $B_S \rightarrow \phi l_i l_j$ • $\Lambda_b \rightarrow \Lambda l_i l_j$ (NEW)

The case $\Lambda_b \to \Lambda \ell_i \ell_j$

$$\frac{\mathrm{d}^2 \Gamma \left(\Lambda_b \to \Lambda \bar{\ell}_i \ell_j\right)}{\mathrm{d}q^2 \mathrm{d}\cos\theta} = \frac{|K|^2}{256\pi^3 m_{\Lambda_b}^3} \frac{1}{q^2} \frac{\sqrt{s_+ s_-}}{2} \frac{\sqrt{r_+ r_-}}{2} \sum_{16 \text{ spins}} |\mathcal{M}|^2,$$

$$= \sum_s \left(a_s + b_s \cos\theta + c_s \cos^2\theta\right),$$

- Prediction concerning LFV decay modes:
 - If NP comes from the **scalar** sector $(C_S^{ij} \neq 0, C_P^{ij} \neq 0)$

$$\mathcal{B}(B \to K^* \ell_i \ell_j) < \mathcal{B}(\Lambda_b \to \Lambda \ell_i \ell_j) < \mathcal{B}(B \to K \ell_i \ell_j) < \mathcal{B}(B_s \to \ell_i \ell_j)$$

- If NP comes from the **vector** sector $(C_9^{ij} \neq 0, C_{10}^{ij} \neq 0)$

$$\mathcal{B}(B_s \to \ell_i \ell_j) < \mathcal{B}(B \to K \ell_i \ell_j) < \mathcal{B}(\Lambda_b \to \Lambda \ell_i \ell_j) \approx \mathcal{B}(B \to K^* \ell_i \ell_j)$$

LFV in dilepton tails at LHC

- Directly probing $bs \to \ell_1 \ell_2$ in p-p collisions.
- Partonic cross-section:

$$\left[\hat{\sigma}\left(\hat{s}\right)\right]_{ij} = \frac{\hat{s}}{144\pi v^4} \sum_{\alpha\beta} C_{\alpha}^{ij} C_{\beta}^{ij} M_{\alpha\beta}$$

• Model independent limits are obtained by recasting searches for $Z' \to \ell_1 \ell_2$.

Process	Projected LHC limit (3 ab ⁻¹)	L.E. exp limit
$\mathcal{B}(B_s \to \tau^{\pm} \mu^{\mp})$	2.5×10^{-4}	4.2×10^{-5}
$\mathcal{B}(B \to K \tau^{\pm} \mu^{\mp})$	5.3×10^{-4}	3.9×10^{-5}
$\mathcal{B}(B \to K^* \tau^{\pm} \mu^{\mp})$	8.9×10^{-4}	N.A.
$\int \mathcal{B}(\Lambda_b \to \Lambda \tau^{\pm} \mu^{\mp})$	8.9×10^{-4}	N.A.

Example of explicit model: Z'

Z-like boson, with non-diagonal flavor structure.

$$\mathcal{L}_{Z'} \supset g_{\ell_i \ell_j}^L \bar{\ell}_i \gamma^{\mu} P_L \ell_j Z'_{\mu} + g_{sb}^L \bar{s} \gamma^{\mu} P_L b Z'_{\mu} + (L \longleftrightarrow R),$$

• Matching to the EFT:

$$C_{9}^{(')\mu\tau} = -\frac{\pi}{\sqrt{2}m_{Z'}^{2}} \frac{1}{\alpha G_{F} V_{tb} V_{ts}^{*}} g_{sb}^{L(R)} \left(g_{\mu\tau}^{R} + g_{\mu\tau}^{L}\right),$$

$$C_{10}^{(')\mu\tau} = -\frac{\pi}{\sqrt{2}m_{Z'}^{2}} \frac{1}{\alpha G_{F} V_{tb} V_{ts}^{*}} g_{sb}^{L(R)} \left(g_{\mu\tau}^{R} - g_{\mu\tau}^{L}\right),$$

Can be bounded from $B_S - \overline{B_S}$ mixing

• Results:

$$\mathcal{B}(B_s \to \mu^{\pm} \tau^{\mp}) < 1.6 \times 10^{-9}$$

 $\mathcal{B}(B \to K \mu^{\pm} \tau^{\mp}) < 1.8 \times 10^{-9}$

$$\mathcal{B}(B \to K^* \mu^{\pm} \tau^{\mp}) < 3.3 \times 10^{-9}$$

$$\approx \mathcal{B}(\Lambda_b \to \Lambda \mu^{\pm} \tau^{\mp})$$

Can be bounded from $\tau \to \mu\mu\mu$ and $\tau \to \mu\nu_{\mu}\nu_{\tau}$ (and fit to $b \to s\mu\mu$)

Conclusion

- LFV present in most model of NP accommodating LFUV (as observed in LHCb with R_K , R_{K^*})
- The required NP effects are encoded in the WCs of the EFT for $b \to s \ell_i \ell_j$.
- Exclusive $b \to s \ell_i \ell_j$ modes are studied at LHCb and at Belle II.
- In addition to $\mathcal{B}(B_s \to \ell_i \ell_j)$, $\mathcal{B}(B \to K^{(*)} \ell_i \ell_j)$ we derive expression for $\mathcal{B}(\Lambda_b \to \Lambda \ell_i \ell_j)$ for which the hadronic matrix elements are already determined in LQCD.
- Bounds on WCs obtained from high- p_T tails of $pp \to \ell_i \ell_j$ at LHC are not useful for $B_S \to \ell_i \ell_j$ and $B \to K \ell_i \ell_j$, but they are for $B \to K^* \ell_i \ell_j$ and $\Lambda_b \to \Lambda \ell_i \ell_j$.
- Bounds from low energy observables: efficient if we adopt an explicit scenario of NP (Z', Leptoquark, sterile neutrino, extended Higgs sector, ...)
- We show that a combination of LE constraints in a scenario with Z' boson results in upper bounds:

$$\mathcal{B}(B_s \to \mu \tau) < 1.6 \times 10^{-9}, \qquad \mathcal{B}(B \to K \mu \tau) < 1.8 \times 10^{-9}$$

 $\mathcal{B}(B \to K^* \mu \tau) < 3.3 \times 10^{-9} \qquad \mathcal{B}(\Lambda_b \to \Lambda \tau \mu) < 3.3 \times 10^{-9}$