Invisibles 2021 Workshop

Contribution ID: 245

Type: PhD forum talk + poster

NUCLEUS outer veto prototype for the CEuNS detection at nuclear reactors

Tuesday, June 1, 2021 5:30 PM (6 minutes)

The detection of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) represents an experimental challenge because of its unique signature: a nuclear recoil with low energy in range of 10 to 100 eV on average. This process, largely unexplored until today, could probe physics beyond the Standard Model such as non-standard neutrino interactions and electromagnetic form factors.

NUCLEUS is a nuclear reactor neutrino experiment conceived for CEvNS detection using a new type of ultralow energy threshold (below 20 eV) cryogenic calorimeters based on the CRESST technology.

Thanks to the greatly enhanced CEvNS cross-section (10 to 1000 times greater than the standard neutrino detection channels), NUCLEUS is aiming for its first phase to develop a miniaturized detector of only $10~{\rm g}$ target mass.

The detector will be installed at the Very Near Site (VNS), a shallow depth experimental hall located in between of the 2 nuclear reactors of the Chooz B power plant in France, with reactor baselines of 72 m and 102 m

At this location with shallow-overburden, a highly efficient background suppression system will be fundamental.

It will include an active cryogenic outer veto designed to work in anti-coincidence with the target detector in order to identify and reject gammas due to the environmental radioactivity and neutron interactions, events that can mimic the CEvNS signal.

In this "talk+poster" I will present the preliminary promising results obtained with our cryogenic outer veto prototype.

arXiv number (if applicable)

Primary author: BEATRICE MAURI (CEA/IRFU/DPhP)

Presenter: BEATRICE MAURI (CEA/IRFU/DPhP)

Session Classification: PhD Forum