

Positivity bounds on Minimal Flavor Violation

Q. Bonnefoy, Emanuele Gendy, C. Grojean: 2011.12855

Question: is Minimal Flavor Violation compatible with Positivity bounds?

Setting up

Positivity bounds from $\frac{1}{2} \left. \frac{\mathrm{d}^2 \mathcal{A}(s)}{\mathrm{d}s^2} \right|_{s=0} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{\mathrm{d}s}{s^3} \mathcal{A}(s) > 0$ unitarity and analyticity in the UV

SM Effective Field Theory
$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}}^{(4)} + \sum_{n \geq 5} \frac{c_n}{\Lambda^{n-4}} \mathcal{O}^{(n)}$$

Minimal $Y_u, Y_d, Y_e \rightarrow \text{ spurions of } SU(3)_{\text{flavor}}^5$ Flavor Violation (MFV) $\mathcal{L}_{\text{SMEFT}} \in \mathbf{1} \text{ of } SU(3)_{\text{flavor}}^{5}$

4- Fermi operators $\sim c_{mnpq} \partial^2 (\bar{\psi}_m \Gamma \psi_n) (\bar{\psi}_p \Gamma \psi_q)$

$$M \equiv Y_u Y_u^\dagger \in \mathbf{1}_Q \oplus \mathbf{8}_Q, \quad \tilde{M} \equiv Y_u^\dagger Y_u \in \mathbf{1}_u \oplus \mathbf{8}_u$$

$$c(\xi)_{mnpq}^{u,i} = \xi_1^{u,i} (\delta_{mn} \delta_{pq}) + \xi_2^{u,i} (\tilde{M}_{mn} \delta_{pq} + \delta_{mn} \tilde{M}_{pq}) + \xi_3^{u,i} (\delta_{mq} \delta_{pn}) + \xi_4^{u,i} (\tilde{M}_{mq} \delta_{pn} + \delta_{mq} \tilde{M}_{pn})$$

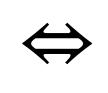
Studying the bounds

Generic form $\alpha_m \alpha_q^* \beta_n \beta_p^* c(\xi, Y)_{mnpq} > 0$, with arbitrary $\alpha_n, \beta_n \in \mathbb{C}^{N_f}$.

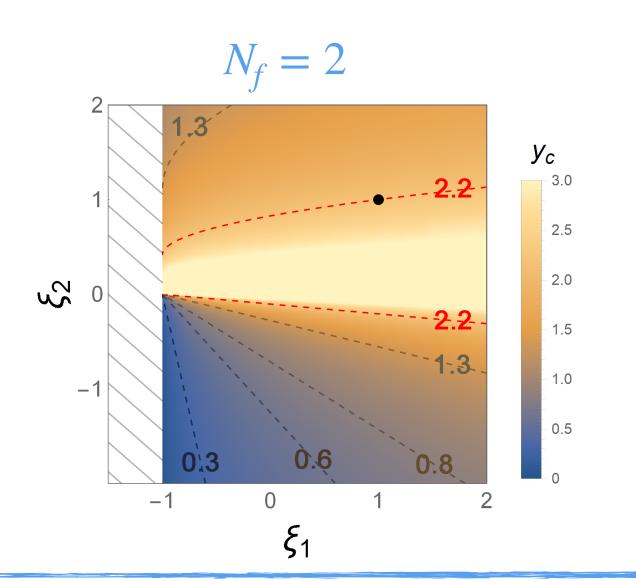
We need to remove α_n, β_n to get bounds on flavor-blind ξ 's, which depend on the biggest Yukawa.

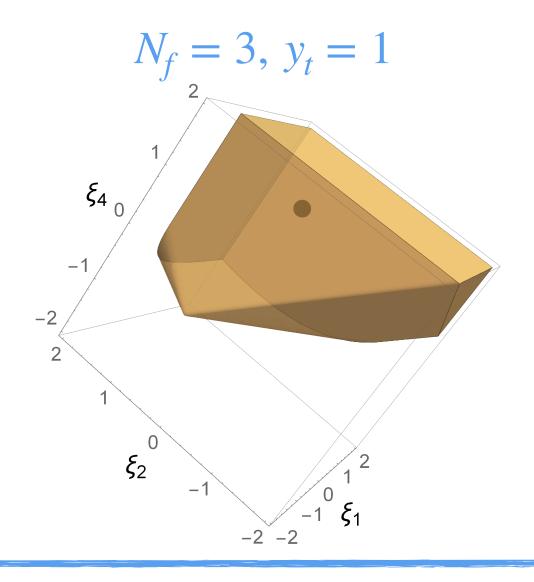
Smaller Yukawa and CKM elements \Rightarrow sub-leading contributions.

Define $C(\beta)_{mq} = c_{mnpq}\beta_n\beta_p^*$, the bounds require it is positive \Leftrightarrow definite



Equivalent to ask $C(\beta)_{ma}$ eigenvalues, depending on β_n only, to be positive





Minimal Flavor Violation and Positivity bounds are compatible!

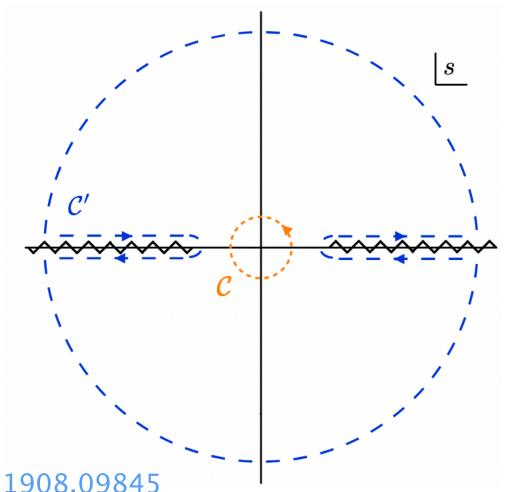
Backup I

Positivity bounds: example

$$\longrightarrow \mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} + \frac{c}{M^{4}} \left(\partial_{\mu} \phi \right)^{4}$$

$$2 \rightarrow 2$$
 scattering in the forward limit $t \rightarrow 0$

2
$$\rightarrow$$
 2 scattering in the forward limit \longrightarrow $\mathcal{A}(s) \equiv \mathcal{M}(s,t=0) = \frac{4cs^2}{M^4}$



$$\mathcal{A}(s) = \sum_{n=0}^{\infty} \lambda_n s^n$$

$$\lambda_{2} = \frac{1}{2\pi i} \oint_{C} \frac{\mathcal{A}(s)}{s^{3}} ds = \frac{4c}{M^{4}}$$

$$= C_{R} + \frac{1}{\pi i} \int_{s_{d}}^{+\infty} \left[\mathcal{A}(s + i\varepsilon) - \mathcal{A}(s - i\varepsilon) \right] ds \qquad C > 0$$

$$= \frac{2}{\pi} \int_{-\infty}^{+\infty} \frac{ds}{s^{2}} \sigma(s) > 0$$

Full list of dimension 8 4-Fermi operators

Type	Content	Operator	Symmetry
self-quartic	(4-u)	$\mathcal{O}_1[u] = c_{mnpq}^{u,1} \partial_{\mu} (\bar{u}_m \gamma_{\nu} u_n) \partial^{\mu} (\bar{u}_p \gamma^{\nu} u_q)$ $\mathcal{O}_3[u] = c_{mnpq}^{u,3} \partial_{\mu} (\bar{u}_m T^a \gamma_{\nu} u_n) \partial^{\mu} (\bar{u}_p T^a \gamma^{\nu} u_q)$	$c_{mnpq} = c_{pqmn}$ $c_{mnpq} = c_{nmqp}^*$
	(4-Q)	$\mathcal{O}_{1}[Q] = c_{mnpq}^{Q,1} \partial_{\mu} (\bar{Q}_{m} \gamma_{\nu} Q_{n}) \partial^{\mu} (\bar{Q}_{p} \gamma^{\nu} Q_{q})$ $\mathcal{O}_{2}[Q] = c_{mnpq}^{Q,2} \partial_{\mu} (\bar{Q}_{m} \tau^{I} \gamma_{\nu} Q_{n}) \partial^{\mu} (\bar{Q}_{p} \tau^{I} \gamma^{\nu} Q_{q})$ $\mathcal{O}_{3}[Q] = c_{mnpq}^{Q,3} \partial_{\mu} (\bar{Q}_{m} T^{a} \gamma_{\nu} Q_{n}) \partial^{\mu} (\bar{Q}_{p} T^{a} \gamma^{\nu} Q_{q})$ $\mathcal{O}_{4}[Q] = c_{mnpq}^{Q,4} \partial_{\mu} (\bar{Q}_{m} T^{a} \tau^{I} \gamma_{\nu} Q_{n}) \partial^{\mu} (\bar{Q}_{p} T^{a} \tau^{I} \gamma^{\nu} Q_{q})$	
	(4-d)	$\mathcal{O}_1[d] = c_{mnpq}^{d,1} \partial_{\mu} (\bar{d}_m \gamma_{\nu} d_n) \partial^{\mu} (\bar{d}_p \gamma^{\nu} d_q)$ $\mathcal{O}_3[d] = c_{mnpq}^{d,3} \partial_{\mu} (\bar{d}_m T^a \gamma_{\nu} d_n) \partial^{\mu} (\bar{d}_p T^a \gamma^{\nu} d_q)$	
cross-quartic	(2-u)(2-Q)	$\mathcal{O}_{K1}[u,Q] = -a_{mnpq}^{uQ,1} \left(\bar{u}_m \gamma_\mu \partial_\nu u_q \right) \left(\bar{Q}_n \gamma^\nu \partial^\mu Q_p \right)$ $\mathcal{O}_{K3}[u,Q] = -a_{mnpq}^{uQ,3} \left(\bar{u}_m T^a \gamma_\mu \partial_\nu u_q \right) \left(\bar{Q}_n T^a \gamma^\nu \partial^\mu Q_p \right)$	$a_{mnpq}^{\psi\chi}=a_{nmqp}^{\chi\psi}$ $a_{mnpq}=a_{qpnm}^*$
	(2-d)(2-Q)	$\mathcal{O}_{K1}[d,Q] = -a_{mnpq}^{dQ,1} \left(\bar{d}_m \gamma_\mu \partial_\nu d_q \right) \left(\bar{Q}_n \gamma^\nu \partial^\mu Q_p \right)$ $\mathcal{O}_{K3}[d,Q] = -a_{mnpq}^{dQ,3} \left(\bar{d}_m T^a \gamma_\mu \partial_\nu d_q \right) \left(\bar{Q}_n T^a \gamma^\nu \partial^\mu Q_p \right)$	
	(2-d)(2-u)	$\mathcal{O}_{K1}[d, u] = -a_{mnpq}^{du, 1} \left(\bar{d}_m \gamma_\mu \partial_\nu d_q \right) \left(\bar{u}_n \gamma^\nu \partial^\mu u_p \right)$ $\mathcal{O}_{K3}[d, u] = -a_{mnpq}^{du, 3} \left(\bar{d}_m T^a \gamma_\mu \partial_\nu d_q \right) \left(\bar{u}_n T^a \gamma^\nu \partial^\mu u_p \right)$	

There are other operators of the form

$$\mathcal{O} = \partial_{\mu}(\bar{\psi}_{m}\gamma_{\nu}\psi_{n})\partial^{\mu}(\bar{\chi}_{p}\gamma^{\nu}\chi_{q}), \quad \psi \neq \chi$$

but their contribution to the amplitude vanishes as $t \to 0$ so we cannot bound them

How do we get the bounds?

Scatter flavor superpositions as initial and final states. E.g. scattering right-handed up-type quarks:

$$|\psi_1\rangle = \alpha_{mi} |\bar{u}_{mi}\rangle, \qquad |\psi_2\rangle = \beta_{mi} |u_{mi}\rangle |\psi_3\rangle = \beta_{mi}^* |\bar{u}_{mi}\rangle, \qquad |\psi_4\rangle = \alpha_{mi}^* |u_{mi}\rangle$$

we get

$$\mathcal{A} = 4s^{2} \left[\left(c_{mnpq}^{u,1} - \frac{1}{6} c_{mnpq}^{u,3} \right) \alpha_{mi}^{*} \beta_{ni} \beta_{pj}^{*} \alpha_{qj} + \frac{1}{2} c_{mnpq}^{u,3} \alpha_{mi}^{*} \beta_{nj} \beta_{pj}^{*} \alpha_{qi} \right]$$

producing the two bounds

$$\alpha_m \alpha_q^* \beta_n \beta_p^* \left(c_{mnpq}^{u,1} + \frac{1}{3} c_{mnpq}^{u,3} \right) > 0,$$

$$\alpha_m \alpha_q^* \beta_n \beta_p^* c_{mnpq}^{u,3} > 0$$

then we can perform a linear redefinition on the flavor-blind coefficients ξ to take them both into the form

$$\alpha_m \alpha_q^* \beta_n \beta_p^* c(\xi)_{mnpq}^{u,i} > 0, \quad i = 1, 3$$

Approximations

We take only the largest up Yukawa to be non-zero, for both $N_f=2$ and $N_f=3$, and study the bounds as a function of it. The down Yukawa matrix is set to zero.

$$Y_u \to \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix} \qquad Y_d \to 0$$

Some remarks

- To account for y_t being $\mathcal{O}(1)$, one needs to resum and set $y_t = 1$ in the end.
- As we can always rotate in the Lagrangian to have diagonal Y_u and the CKM matrix entirely in Y_d , the CKM does not show up at leading order in the bounds. To observe it we need to expand further to include both Y_u and Y_d contributions.
- Alternatively, we can scatter initial and final states limited to two flavors. In this case the bounds are as in $N_f=2$ but depend on the CKM entries (in the Wolfenstein parametrization) through the combination $\sigma \equiv A^2 \lambda^4$.