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| Positivity bounds: example
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Full list of dimension 8 4-Fermi operators
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There are other operators of the form
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but their contribution to the amplitude vanishes as r - 0 so we

cannot bound them




Scatter flavor superpositions as initial and final states. E.qg.

scattering right-handed up-type quarks:
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then we can perform a linear redefinition on the flavor-blind
coefficients &£ to take them both into the form
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We take only the largest up Yukawa to be non-zero, for both
Nf = 2 and ]\9 3, and study the bounds as a function of it.

The down Yukawa matrix is set to zero.
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Some remarks

To account for y, being O(1), one needs to resum and set
y, = 1 in the end.

As we can always rotate in the Lagrangian to have diagonal

Y, and the CKM matrix entirely in Y, the CKM does not
show up at leading order in the bounds. To observe it we

need to expand further to include both Y, and Y,
contributions.

Alternatively, we can scatter initial and final states limited to
two flavors. In this case the bounds are as in Nf 2 but
depend on the CKM entries (in the Wolfenstein
parametrization) through the combination o = A1,



