Fermion mass hierarchies from vector-like families with an extended 2HDM and a possible explanation for the electron and muon anomalous magnetic moments

1. Introduction

There are long-established anomalies which are not addressed by the
SM such as muon and electron anomalous magnetic moments.

Aa, = a,;® —a," =(26.1 £8.0) x 107",
Aa, = a? — o™ = (—0.88 £ 0.36) x 1072
When trying to explain both anomalies at 1o constraint, a main difficulty
arises from the sign of each anomaly.
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Figure 1: Diagrams contributing to muon anomalous magnetic moment(left) and electron
anomalous magnetic moment(right) where H, , are CP-even non-SM scalars and A, , are CP-odd
scalars in the physical basis

Reminding the sign of each anomaly at each sigma, it is

Aa, =+, Aa,=— atland2o 2)
Aa, =+, Aa,=+ at3o

The Higgs mechanism provides a nice explanation on fermion’s mass,
however, it does not tell why one mass is relatively blg or small.
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Figure 2: Hierarchical structure of the SM

The described phenomenology can be tackled by inclusion of
vector-like (VL) families.

@ Muon and electron g — 2
@ Hierarchy of the SM

One vector-like family can get second and third SM generations
massive, while the first remains massless[1]. We also enlarge the
gauge symmetry with the global U(1) symmetry.

@ The local U(1)

@ The global U(1)" symmetry does not have the one but allows one
more non-SM scalar.

} vector-like families

symmetry features Z’ boson

Within this BSM model frame, we focus on

@ the W boson exchange at one-loop level to explain Aa, ., while
being consistent on p — e~ constraint.

@ We next focus on the scalar exchange at one-loop level in the
case where no charged lepton mixing arises.

2. The origin of SM Yukawa couplings from VL families

We assume that the SM Yukawa Lagrangian is the low energy limit of
an extended theory with enlarged symmetry and particle spectrum
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Figure 3: Diagrams in the model which lead to the effective Yukawa interactions, where
Y, Y = Q,u,d, L, e(neutrinos will be treated separately) i,j = 1,2,3, k,l = 4,5, My is vector-like mass

and H = iooH* \H = H, 4
The diagrams of Figure 3 lead to the effective SM Yukawa interactions.
% (9) X
’CYukawa — lJ ’ lkwlLijR A;f> yl] %LH%R + h C. (3)

Our BSM model takes the form as follows:

Field Qi wuir dir Li eir O wir dig Lir e ik Oir Ui die Lig € Vie ¢ Hy, Hy

SUB)c 3 3 3 1.1 3 3 3 1 1 1 3 3 3 1 1 111 1
2 2

SU(2)L 1 1 2 1 2 1 1 2 1 1 1 1 2 1 1 1 2 2
W & 3 ob-bt b 3 dobor o b dobbo1 004 o
vty o o o o o 1 -1 -11 -1-11 —-1-11 —-1-11 -1 -1

Table 1: An extended 2HDM with two vector-like (VL) families plus global U(1)" symmetry where
i,j=1,2,3and k,[=4,5

0 The SM particles are neutral under the U(1)" symmetry to keep
the SM Yukawa interactions from arising.

Q Once the flavon ¢ develops its vev, the effective SM Yukawa
interactions get to have a proportional factor (¢) /M.
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The possible diagrams contributing to the low energy quark Yukawa

The unitary mixing matrix U is defined by multiplication of two unitary
interaction are given in Figure 4:

matrices which we call U, and Ug, respectively:
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Figure 4: Diagrams in the model which lead to the effective Yukawa interactions for the up quark
sector(two above diagrams) and the down quark sector(two below diagrams) in mass insertion
approximation, where i,j = 1,2,3 and k,[ = 4,5 and My is vector-like mass.
The possible diagrams giving rise to the charged lepton Yukawa wW- W 148 14
interactions are shown in the below Figure:
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Figure 8: Diagrams for CLFV p — ey decay with all SM neutrinos(n = 1,2, 3)

o . My , The SM prediction with neutrinos gives a very suppressed sensitivity [2]
l > eR i > : — ; ]R _ .
ek Le Li BR (1 — ey) = 1075 (with v ,3). (11)
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This impractical sensitivity can be enhanced to the observable level by

Figure 5: Diagrams in the model which lead to the effective Yukawa interactions for the charged . _ : )
introducing heavy vector-like neutrinos.

lepton sector
The corresponding diagram for the neutrino sector in the mass insertion

Y Y
approximation reads:
H, H,
| | w— V% W™ W—
i A HR n Uy — AL — Un e

lk
LjL

Lip

\
A

Figure 9: Diagrams for CLFV p — ey decay with all neutrinos(n = 1,2, 3,4,5)
The final form for ;1 — ey decay with all neutrinos in this model reads:

VkR VL

Figure 6: Type 1b seesaw mechanism

BR (1 — ey) = — F(0))*, (12)

3. Effective Yukawa matrices using a mixing formalism

where F is a loop function given by (x, = M2 /M3,)
10 — 43x, + 78x2 — (49 — 18log x,,)

Consider a 7 x 7 mass matrix for Dirac fermions:

(| vm vw v vw U D s ) At

F<xn) — (13)

— _1)4

Vi 0 0 0 4<HO> )’11&5<H0> lep4<¢> leb5<¢> 3(xn — 1)

Yo | 0 0 0 y§4<HO> y;@ (HO) x;ﬁ(@ x;@(gb} We derive our prediction for the muon anomalous magnetic moment in
s 0 0 0 y§”4<H0> ygb5<Ho> x%@ x§b5<¢> this section. Consider two possible diagrams for muon(electron)

anomalous magnetic moment at one-loop level in Figure 10
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Figure 10: Diagrams for muon anomalous magnetic moment with all neutrinos(n = 1,2,3,4,5)

Our prediction for muon(electron) anomalous magnetic moment at
one-loop level is
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4. Analytic arguments for Aa, . and BR (i — e7y) with W boson w (14)
Qw m,
The simplified mass matrix for neutrinos in our model is given by: Aa, = 16—‘21\777“ (F(xa) — F(0)).
W
( i Yar  PaL | VAR VAR As for the constraint of deviation of unitarity n with the CLFV 1 — e~
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where v,(v,) is the vev of qu(Hd), v, runs from 246/\@ GeV ~ 174 GeV to

2, .2 2 . _ 1 < 4.2 % 10~ (for NH) , < 4.8 x 1074 (for IH)
246 GeV and v, +v; = (246 GeV)". The next step is to read off Weinberg < 2.9 % 1077 (for NH) . < 2.4 x 10~ (for IH)
operator for neutrinos from the neutrino mass matrix.
H H 7 I Then we are ready to calculate impact of muon and electron g — 2 with
‘ ‘ " d the given bound of Equation 16.

decay at 10, it is given by[3, 4]
1] < 8.4 x 107°. (15)

As in the constraint for 7,; in Equation 15, the other non-unitarities 71, 2
for electron and muon anomalous mangetic moment are given by[5]
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Figure 7: The conventional Weinberg operator (or type 1a seesaw mechanism; left) and a
Weinberg-like operator (or type 1b seesaw mechanism; right)

Here, we can read off nature of vector-like mass by looking at the
renormalizable Lagrangian.

5. Analytic arguments for Aa, ., and BR (¢ — e7) with scalars

The relevant sector for muon and electron g — 2 with scalar exchange is
charged lepton, so revisit the effective Yukawa matrix for the charged

— — — leptons.
EE“kawaJ“MaSS y: L,LHquR—l—EyiV/L,'LHdI/kR—I—M%VkRVkR—I—h.C., (7) P 0 0 . o
. . . : . X8, VxS, Yiex
The neutrino mass matrix of Equation 6 can be diagonalized by the ) ) e e | (@) Yistst Yistsa Yists3 ) (g)
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The only diagonal components should alive in the mass matrix. In order
to make the mass matrix diagonal, we assume that

Y34 = X3 = ¥is0535 = %51 50,53 = X3535 = Y5253 = 0. Then, the mass matrix
IS reduced to

, yglslfS 0 0
Yij = 0 ¥945%4 OL , (19)
0 0 Yizs3y

where sts ~ x5 (9) /Mss, 55, == x4, (¢) /My, 55, ~ x3, (¢) /My, and the
diagonal elements from top-left to bottom-right should be responS|bIe
for electron, muon and tau Yukawa constants, respectively. The
charged lepton mass matrix with the assumption is:

€IR  €)R  €4R LSR \
Liy O 0 0 xtvy
0 0 ¥ O . (20)
E5L yglvd 0 0 M

KE4L 0 xpve My O )

The reduced charged lepton mass matrix in Equation 20 clearly tells
that no mixing between charged leptons arise so the branching ratio of
1 — ey is naturally satisfied under this scenario. The scalar exchange
for both anomalies can be realized by closing the Higgs sectors in
Figure 5 as per Figure 11.
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Figure 11: Diagrams contributing to muon anomalous magnetic moment(left) and electron
anomalous magnetic moment(right) where H, , are CP-even non-SM scalars and 4, , are CP-odd
scalars in the physical basis

The scalar potential of the model under consideation takes the form:

V =i} (HH]) + 3 (HaH} ) + 13 (607) — i, {62+ (6] + A1 (HaH]) + 2o (Hdez)z
s (HHD) (HoH]) + o (HuHY) (HaHD) + s (2gHLH 6 + )
£ A6 (00" + A7 (66°) (HLH]) + A (60") (HaH))

(21)
where

0 N(i=1,2,---,8) : dimensionless parameters, p;(j = 1,2,3) :
dimensionful parameters

e We consider the U(1)" symmetry as global in this model to avoid
Z' constraint.
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The rate for the h — ~~ decay is given by:
agmml%z 2 ChHiHﬂ/
D(h = 7)) = 52252 Y angNeQiF 1 japr) + anwwFi (pw) + ———Fo(py)
2567y 7 2my,. k

(24)
where p; are the mass ratios p; = W|th M; = mg, My, aery 1S the fine

structure constant; N¢ is the color factor (Nc = 1 for leptons and N¢ = 3
for quarks) and O is the electric charge of the fermion in the loop. The
necessary deviation factors for our numerical analysis are:

Vi
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The Lagrangian for the muon anomalous magnetic moment is:
Lag, = Ysabt (RD)2Hy + (R )23Hy — i (R)) A1 — i’ (R] )23A2) @

(23)

apy >~ 1,

+ x84 ((R)s2H1 + (R, )33Ha — iy’ (R} )nA1 — iv’ (R} )33A2) @ + Mieqes + .

(26)

Then, it follows that the muon and electron anomalous magnetic
moments in the scenario of diagonal SM charged lepton mass matrix
takes the form:

m2
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where the loop integrals are given by:
(e, 1 (1 mXE mEu)
Lsiry (me,ms) = /0 m2x? + (mg —m2 ) x +mg p (1 — x)dx (28)

and S(P) means scalar(pseudo scalar) and E means vector-like family.

Fermion mass hierarchies from vector-like families with an extended 2HDM and a possible explanation for the electron and muon anomalous magnetic moments

(RD 23 (ReT> 33 II(JE) (e, Mma,) } ;

6. Numerical analysis of the scalar exchange

To begin with, we consider the parameter spaces for the muon anomaly
versus electron anomaly with a mass parameter which attends both
anomalies (H,,,A;,) and does not (H*) in Figure 12.

Figure 12: Available parameter spaces for the muon anomaly versus electron anomaly with a mass
parameter

We investigate a correlation for an anomaly versus a relevant mass
parameter with another anomaly in bar in Figure 13.
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Figure 13: Available parameter spaces for the muon anomaly(electron anomaly) versus a relevant
vector-like mass m,, (m,.)

The total cross section for pp — H; is given in Figure 14.
12}, | | ' ' '

10}

ag(pp—->H4)[pb]

180 200 220 240 260 280 300
M, [GeV]

Figure 14: The total cross section for pp — H; at 14 TeV

The total cross section for pp — Hi runs from nearly 8 pb at 200 GeV to
smaller values as mass of H; increases. The order of magnitude of this
cross section for pp — H; is compatible to that of the SM process

pp — h, however the BSM process is strongly suppressed since its
single LHC production via gluon fusion mechanism is dominated by the
triangular bottom quark loop. Therefore, our prediction with the light
non-SM scalar H, is possible to accommodate each anomaly constraint
at 1o.
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