

Invisible Decays of a Dark Photon at Belle II

INVISIBLES21 (May 31st – June 4th)

Miho Wakai¹, Chris Hearty¹, Torben Ferber², Sam Cunliffe²

¹University of British Columbia, ²Deutsches Elektronen-Synchrotron

Introduction

- Dark photon (A') is a vector gauge singlet dark sector mediator which couples to the Standard Model (SM) photon. This is derived from a U(1)' extension of the symmetry group¹.
- The coupling strength ∈ arises from the kinetic mixing of the hypercharge and the vector field strength.
- At Belle II, we are searching for a dark photon with signature $e^+e^- \to \gamma_{ISR}A'$, where γ_{ISR} is an initial state radiation and the A' decays invisibly to two dark matter candidates; $A' \to \chi \chi$. The final state is a single photon.
- The A' mass is obtained through the single photon energy; $m_{A'}^2 = 4E_{beam}^*(E_{beam}^* E_{\gamma ISR}^*)$
- The newly implemented trigger will allow these single photon events to be saved (down to 0.5 GeV), which was not possible for the previous experiment Belle.

Belle II Simulation Preliminary

Belle II and Super KEKB

- SuperKEKB is an asymmetric particle accelerator with a circumference of 3 km located in Japan.
- Operates mainly at resonance energy of Y(4S) at 10.58 GeV.
- Current aim is to collect 50 ab⁻¹ by 2031.

Analysis Process

- As we are at the pre-unblinding stage, we are studying background.
- The background can be split into 3 different regions as a function of the single photon center of mass energy, as the dominant background differs between regions.
- Low E*: e⁺e⁻ → e⁺e⁻γ, where both e⁺e⁻ are out of the Central Drift Chamber acceptance
- Middle $E^*: e^+e^- \to \gamma\gamma\gamma$, where 2 γ s are not reconstructed
- High E^* : $e^+e^- \rightarrow \gamma\gamma$, where 1 γ is not reconstructed.

Predicted Background γ 's Energy against Location

• In order to put an estimate on the number of backgrounds in the High E^* region, we seek the probability of missing a photon in the detector.

- The two main detectors we rely on are the Electromagnetic Calorimeter (ECL) and the Klong Muon Detector (KLM).
- Efficiency is reduced due to the gap structure of the detectors, hence photons in those regions are considered unreliable.

Problematic Regions in Detector (gaps)

Further Analysis Process and Results

- To find the efficiency, we study e⁺e⁻ → γγ events where one
 of the photons is highly leaking, i.e. only deposits a fraction
 of the energy in the crystals of the ECL detector. We further
 look into the KLM and see whether or not this photon
 released some energy into the KLM.
- The leakage energy is defined by:

$$E_{leak} = E_{beam} - E_{calorimeter}$$

- Selection criteria of $e^+e^- \rightarrow \gamma\gamma$ event:
- Use two most energetic photons that are back to back per event
- No charged tracks from interaction point
- The two photons are split into tag and probe, where the tag is a photon which consists of $E^* > 4.5$ GeV. Analysis of efficiency is conducted using the probe photon.
- In order to look at the gap structure, the efficiency was measured through the individual crystals of the ECL, labeled as Theta ID and Phi ID.
- The efficiencies of the ECL and KLM detector are found by counting the hits both detectors had as a function of leakage energy of the photons.
- A hit in KLM is currently defined by:
- Detected by at least 2 layers
- Innermost layer of hit starts from 1 or 2, closest to the ECL
- Hit has to be within < 25° of the ECL hit

• In addition to the detector efficiency, the Monte Carlo (MC) and data discrepancy has been studied. This is to find the background estimate on data by scaling the MC events.

- Results show that for highly leaking photons, the data has many more events than MC (~1.7) suggesting that the gaps between crystals may be larger in data than MC.
- Currently pursuing the correct scale factor for unblinding.

Conclusion and Outlook

- Currently quantifying the background of $e^+e^- \to \gamma\gamma$ in data by looking at the detector efficiencies and the data and MC discrepancy.
- Work in progress on MC signal samples for signal selection.
- The study is continuously being updated with new simulated samples of MC and data.
- We expect to achieve our estimated sensitivity through using both the ECL and KLM sub-detectors.

References

- B. Holdom, Physics Letters B166, 196 (1986).
- 2 M. Graham, C. Hearty, M. Williams, Annu. Rev. Nucl. Part. Sci. 2021. 71:37

