

Search for neutrinoless double beta decay of ¹²⁸Te with the CUORE experiment

Valentina Dompè "La Sapienza" Università di Roma INFN - Istituto Nazionale di Fisica Nucleare

Invisibles21 Workshop, 1st June 2021

Poster ID #232

Neutrinoless double beta decay (0vββ)

Double beta decay:

- Rare second order Fermi weak nuclear transition
- Candidates: even-even nuclei, when single β decay energetically forbidden

V. Dompè - Invisibles21 workshop, 1st June 2021 - Search for neutrinoless double beta decay of ¹²⁸Te with the CUORE experiment - Poster ID #232

Lepton number violating process: $\Delta L = 2$, would demonstrate that L is not a symmetry of nature

- Only possible if neutrinos have a **Majorana component** ($\nu = \overline{\nu}$): new possible mechanism giving rise to v mass
- Possible explanation of **matter-antimatter asymmetry** origin via Leptogenesis

2

CUORE: Cryogenic Underground Observatory for Rare Events

- Main Physics goal: search for $0\nu\beta\beta$ decay of ¹³⁰Te
- Ton-scale array of 988 natural TeO₂ crystals (742 kg of TeO₂, 206 kg of ¹³⁰Te)
- Crystals operated as thermal detectors at ~10 mK •
- Located at the underground Laboratori Nazionali del Gran Sasso of INFN, Italy
- Ultra-low background level: $(1.49 \pm 0.04) \cdot 10^{-2} \text{ counts/(keV \cdot kg \cdot y)}$
- Energy resolution (FWHM) in physics data: (7.8 ± 0.5) keV at ¹³⁰Te Q_{BB}
- Latest 90% C.I. limit on ¹³⁰Te 0vββ decay half life: ullet $T_{1/2} > 2.2 \cdot 10^{25} y$

Search for 0vßß decay of ¹²⁸Te: Motivations

- ¹²⁸Te is another $\beta\beta$ emitting tellurium isotope: ¹²⁸Te \rightarrow ¹²⁸Xe
- High natural abundance: 31.75%
- $Q_{\beta\beta} = (866.6 \pm 0.9) \text{ keV}$

4500 4000 3500 3000 Ke O-value 2000 ¹³⁰Te Highly populated region: ⁶Ge natural γ radioactivity, ¹³⁰Te 1500 $2\nu\beta\beta$ decay 1000E 15 25 10 20 Isotopic Abundance [atomic %] **CUORE:** a factor ~10 higher sensitivity is expected, competitive with geochemical results N. of ¹²⁸Te $\beta\beta$ emitters in CUORE: $9.519 \cdot 10^{26}$ • ¹²⁸Te mass in CUORE: 188.5 kg

- Latest ¹²⁸Te 0vββ decay results:
 - From direct experiments
 (MiDBD in 2003, 6.8 kg of TeO₂, 2 crystals enriched in ¹²⁸Te at 82.3%):

$$T_{1/2}^{0\nu} > 1.1 \cdot 10^{23} y$$

From geochemical experiments:
 (refers to the sum of 2v and 0v modes)

$$T_{1/2}^{^{128}Te} = (2.0 \pm 0.3) \cdot 10^{24} \, y$$

V. Dompè - Invisibles21 workshop, 1st June 2021 - Search for neutrinoless double beta decay of ¹²⁸Te with the CUORE experiment - Poster ID #232

4

Search for 0vββ decay of ¹²⁸Te: Method

- Statistical approach: Bayesian binned fit based on BAT software •
- Parameter of interest: 0vßß decay signal rate \bullet
- Full containment efficiency from MC simulations: 97.59% •
- Background structures in the ROI: $208TI \gamma$ line at 860.56 keV ⁵⁴Mn γ line at 834.8 keV
- •

M1 spectrum from Background Model Simulations

V. Dompè - Invisibles21 workshop, 1st June 2021 - Search for neutrinoless double beta decay of ¹²⁸Te with the CUORE experiment - Poster ID #232

Analysis validated on toyMC simulations produced exploiting the knowledge from CUORE Background Model

Extracted values, used	d to produce	the toyMC	simulations
------------------------	--------------	-----------	-------------

Parameter	Units	Value for toyMC
$\Gamma^{ m toy}_{Mn}$	cts/(kg • y)	16.27
$\Gamma^{ m toy}_{Tl}$	cts/(kg • y)	0.95
BI ^{toy}	cts/(keV • kg • y)	1.68
slope ^{toy}	1/keV	-0.4

5

CUORE Sensitivity on 0vββ decay of ¹²⁸Te

Limit Setting sensitivity: $T_{1/2} = 2.2 \cdot 10^{24} y$

V. Dompè - Invisibles21 workshop, 1st June 2021 - Search for neutrinoless double beta decay of ¹²⁸Te with the CUORE experiment - Poster ID #232

Limit Setting Sensitivity: median of the distribution of the 90% C.I. limits on T_{1/2}

- 10⁴ toyMC simulated spectra with background components only from the CUORE Background Model
- Bayesian fit with signal + background components independently run on each toyMC
- Extraction of the 90% C.I. half life limit from each of the 10⁴ Bayesian fits
- Distribution of the half life limits and extraction of the median

CUORE:

- can improve >10 times the limit on 128 Te $0v\beta\beta$ half-life from the last direct experiment
- can possibly overcome the geochemical results.

