_aboratoire Kastler Brossel

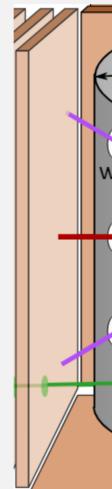
Does antimatter fall like matter ?: focus on GBAR experiment (CERN)

1. Presentation of GBAR (Gravitational Behaviour of Antihydrogen at Rest)

One of the main questions of fundamental physics is the action of gravity on antimatter.

Current experimental bound: $-65 \leq \overline{g} / g \leq 110$.

Η


(Alpha Collaboration, 2013)

Experiment GBAR (<u>https://gbar.web.cern.ch/</u>): aims at measuring free fall acceleration \overline{g} of cold antihydrogen atoms in the gravitational field of Earth, with an accuracy of 1%. Initially, ion \overline{H}^+ is trapped at very low temperature.

Start time t_0 : the excess e^+ of \overline{H}^+ is photodetached -> neutral \overline{H} anti-atom released;

Stop T: annihilation of \overline{H} on the surface of the detector after free fall (of height 30 cm).

The statistical analysis of annihilation events allows to deduce the free-fall acceleration \overline{q} .

$(V_{x,0}, V_{y,0}, V_{z,0})$ -		$V_x = \frac{X}{T}$, V_x	$V_y = rac{Y}{T}$,
Initial velocity	inipact	Ĩ	T
Floor	Time (s) - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0.1 0.0	$\mathcal{L}(g) = \prod_{i=1}^{N} J_g(X)$	$X_i, Y_i, Z_i, T_i)$
(with $g_0 = 9.81 \text{ m/s}^2$		-0.06 -0.04 -0.02 0.00 g/g ₀ - 1	0.02 0.04 0.06
	′	Process	repeated <i>M</i> tin
	400 - stevaj 300 - 0 - 0.15	(ĝ - g ₀) / g ₀	Histogra distribu
Average:	$\mu_g \approx g_0$ (no bias	s)	Relative un

O. Rousselle P. Cladé, S. Guellati, R. Guérout and S. Reynaud (LKB)

(T,R)floor

$$V_{z,0} = \frac{Z}{T} + \frac{gT}{2}$$

$$\Rightarrow \hat{g} = \frac{\int g\mathcal{L}(g)dg}{\int \mathcal{L}(g)dg}$$

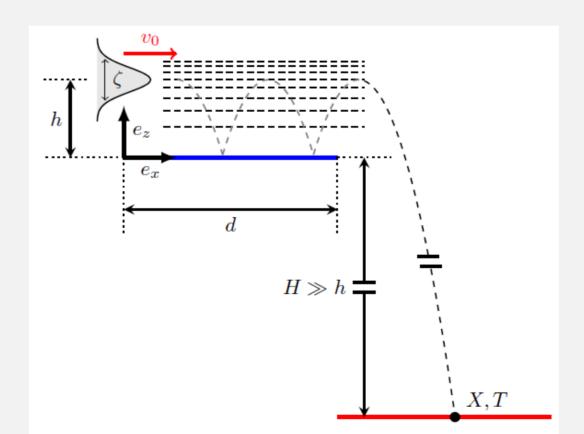
Likelihood estimator

imes

ram of the oution of \hat{g}

```
uncertainty: \sigma_q/g_0
```

3. Effects of design parameters

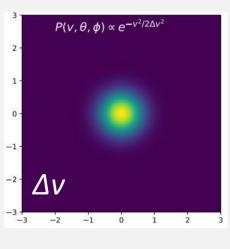

Which parameters affect the accuracy of the measurement?

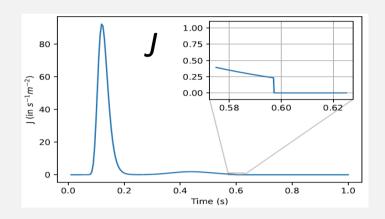
- \succ Geometry of the free-fall chamber;
- \succ Number of atoms N;
- \succ Wavepacket velocity dispersion Δv ;
- \succ Photodetachement atom recoil v_{e} ;
- \succ Polarization of the laser ϑ_n ;
- \succ Cuts in the probability current density *J*;
- \succ Spatial resolution Δz on detection.

of the design (O. Rousselle et al., to be published):

4. Quantum interference measurement

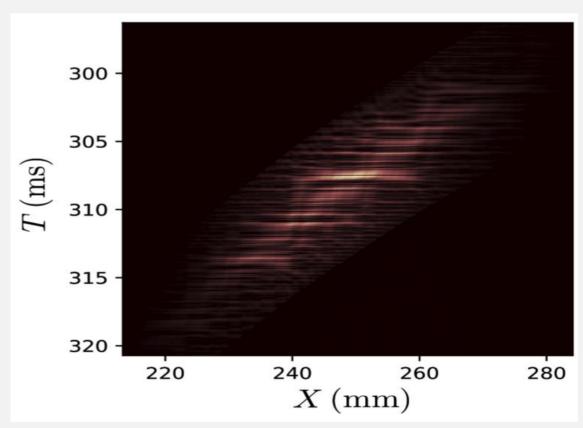
Addition of a mirror some μm below the trap (*P.P. Crépin et al., 2019*). Atoms bounce several times above the mirror (quantum reflection on Casimir-Polder potential), and the quantum paths corresponding to different GQS (Gravitational Quantum States) interfere.


2D representation of the quantum experimental setup


the classical one -> better uncertainty: $\sigma_a / g \approx 10^{-6}$.

References

GBAR Collaboration, The GBAR project, or how does antimatter fall?, Hyperfine Interactions 228, 2014 P.-P. Crépin et al., Quantum interference test of the equivalence principle on antihydrogen, Phys. Rev. A 99, 2019



For $\Delta v=0.44 \text{ m/s}$, $v_e=1.77 \text{ m/s}$, horizontal polarization of the laser and current geometry

 $\sigma_a/g \approx 0,91\%$

—> confirmation of the goal of uncertainty < 1%.

Current |*J*(*X*,*T*) | *on the detection plate*

After free fall, the quantum interference pattern on the detector reveals much more information than