A New Approach to Probe Non-Standard Interactions in Atmospheric Neutrino Experiments (JHEP 2021, 159 (2021) arXiv: 2101.02607) #### Anil Kumar Research Scholar, India-based Neutrino Observatory (INO) (Institute of Physics, Bhubaneswar, SINP, Kolkata, HBNI, Mumbai, India) Collaborators: Amina Khatun, Sanjib Kumar Agarwalla, Amol Dighe Poster ID: 266 Invisibles virtual Workshop, 2021 May 31 to June 4, 2021 # Iron Calorimeter Detector (ICAL) at INO¹ - ICAL@INO: 50 kton magnetized iron calorimeter detector at the proposed India-based Neutrino Observatory (INO) - Location: Bodi West Hills, Theni District, Tamil Nadu, India - Aim: To determine mass ordering and precision measurement of atmospheric oscillation parameters. - Source: Atmospheric neutrinos and antineutrinos in the multi-GeV range of energies over a wide range of baselines. - Uniqueness: Charge identification capability helps to distinguish μ^- and μ^+ and hence, ν_μ and $\bar{\nu}_\mu$ - Muon energy range: 1 25 GeV, Muon energy resolution: $\sim 10\%$ - Baselines: 15 12000 km, Muon zenith angle resolution: $\sim 1^{\circ}$ ¹Pramana - J Phys (2017) 88 : 79, arXiv:1505.07380 # Oscillation dip and valley in ν_{μ} survival probability $$P(u_{\mu} ightarrow u_{\mu})=1-\sin^22 heta_{23}\cdot\sin^2\left(rac{\Delta extit{m}_{32}^2 extit{L}_{ u}}{4 extit{E}_{ u}} ight)$$ - The first oscillation minima results in oscillation **dip** in L/E and **oscillation valley** in (L,E) plane. - The U/D ratio of the reconstructed muon events is a good proxy for ν_{μ} survival probability. - The U/D ratio automatically cancels most of the systematic uncertainties. Anil Kumar et. al. EPJC 81, 190 (2021), arXiv:2006.14529 # U/D ratio (defined for $\cos \theta_{ii}^{\rm rec} < 0$) $$\mathsf{U}/\mathsf{D}(E_{\mu}^{\mathsf{rec}},\cos heta_{\mu}^{\mathsf{rec}}) \equiv rac{\mathit{N}(E_{\mu}^{\mathsf{rec}},-|\cos heta_{\mu}^{\mathsf{rec}}|)}{\mathit{N}(E_{\mu}^{\mathsf{rec}},+|\cos heta_{\mu}^{\mathsf{rec}}|)} \; ,$$ where $N(E_{\mu}^{\rm rec}, \cos \theta_{\mu}^{\rm rec})$ is the number of events with energy $E_{\mu}^{\rm rec}$ and zenith angle $\theta_{\mu}^{\rm rec}$. $L_{\nu} = \sqrt{(R+h)^2 - (R-d)^2 \sin^2 \theta_{\nu}} - (R-d) \cos \theta_{\nu}$, where R, h, and d are the radius of Earth (6371 km), the average height from the Earth surface at which neutrinos are created (15 km), and the depth of the detector underground (0 km), respectively. ◆ロト ◆問ト ◆ヨト ◆ヨト 季目 ◆900 ### Neutral current Non-Standard Interactions (NSI) Neutral current NSI in propagation through matter. $$\mathcal{L}_{\mathsf{NC-NSI}} = -2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}^{Cf}(\bar{v}_{\alpha}\gamma^{\rho}P_{L}v_{\beta})(\bar{f}\gamma_{\rho}P_{C}f)$$ where, $P_L = (1 - \gamma_5)/2$, $P_R = (1 + \gamma_5)/2$, and C = L, R. $$\varepsilon_{\alpha\beta} = \sum_{f=e,u,d} \frac{V_f}{V_{CC}} \left(\varepsilon_{\alpha\beta}^{Lf} + \varepsilon_{\alpha\beta}^{Rf} \right)$$ where, $V_{\text{CC}} = \sqrt{2} G_F N_e, V_f = \sqrt{2} G_F N_f, f = e, u, d$. $$H_{mat} = \sqrt{2}G_F N_e egin{pmatrix} 1 + arepsilon_{ee} & arepsilon_{e\mu} & arepsilon_{e\mu} & arepsilon_{\mu\mu} & arepsilon_{\mu au} \ arepsilon_{e au}^* & arepsilon_{\mu au}^* & arepsilon_{ au au} \end{pmatrix}$$ In atmospheric neutrinos, $\mu-\tau$ channel is dominant, hence, we choose to constrain $\varepsilon_{\mu\tau}$ (only real values) $$H_{mat} = \sqrt{2}G_F N_e egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & arepsilon_{\mu au} \ 0 & arepsilon_{\mu au}^* & 0 \end{pmatrix}$$ # Existing bounds on $\varepsilon_{\mu au}$ | Experiment | 90% C.L. bounds | | | | |-----------------------|---|---|--|--| | Lxperiment | Their Convention $(ilde{arepsilon}_{\mu au})$ | Our convention $^2~(arepsilon_{\mu au}=3 ildearepsilon_{\mu au})$ | | | | IceCube ³ | $-0.006 < ilde{arepsilon}_{\mu au} < 0.0054$ | $-0.018 < arepsilon_{\mu au} < 0.0162$ | | | | DeepCore ⁴ | $-0.0067 < \widetilde{arepsilon}_{\mu au} < 0.0081$ | $-0.0201 < arepsilon_{\mu au} < 0.0243$ | | | | Super-K ⁵ | $ ilde{arepsilon}_{\mu au} < 0.011$ | $ arepsilon_{\mu au} < 0.033$ | | | Table: Existing bounds on $\varepsilon_{\mu\tau}$ at 90% confidence level. Note that the bounds presented are on $\tilde{\varepsilon}_{\mu\tau}$ that is defined according to the convention $V_{\rm NSI} = \sqrt{2} G_F N_d \, \tilde{\varepsilon}_{\mu\tau}$, while we use the convention $V_{\rm NSI} = \sqrt{2} G_F N_e \, \varepsilon_{\mu\tau}$. Since $N_d \approx 3 N_e$ in Earth, the bounds on $\tilde{\varepsilon}_{\mu\tau}$ have been converted to the bounds on $\varepsilon_{\mu\tau}$, using $\varepsilon_{\mu\tau} = 3 \, \tilde{\varepsilon}_{\mu\tau}$, as shown in the third column. ²Y. Farzan and M. Tortola, Front. in Phys. 6 (2018) 10, arXiv:1710.09360. ³J. Salvado, et. al., JHEP 01 (2017) 141, arXiv:1609.03450 ⁴IceCube collaboration, Phys. Rev. D 97 (2018) 072009, arXiv:1709.07079 # Event generation at ICAL In this analysis, we use: - Unoscillated neutrino events generation using NUANCE⁶ for ICAL geometry - Neutrino flux at INO site (Theni) - Three-flavor matter oscillation with PREM⁷ profile - Migration matrices⁸ for detector response to muons obtained from ICAL-GEANT4 simulation - Ratio of upward-going (U) and downward-going (D) reconstructed muon events The values of the benchmark oscillation parameters used in this analysis. | $\sin^2 2\theta_{12}$ | $\sin^2 \theta_{23}$ | $\sin^2 2\theta_{13}$ | $ \Delta m_{32}^2 $ (eV ²) | $\Delta m_{21}^2 \; (\mathrm{eV}^2)$ | δ_{CP} | Mass Ordering | |-----------------------|----------------------|-----------------------|--|--------------------------------------|------------------------|---------------| | 0.855 | 0.5 | 0.0875 | 2.46×10^{-3} | $7.4 imes 10^{-5}$ | 0 | Normal (NO) | ⁶D. Casper, Nucl. Phys. B Proc. Suppl. 112 (2002) 161 A.M. Dziewonski et al. Phys.Earth Planet.Interiors 25 (1981) 297-356 Animesh Chatteriee et al. 2014 JINST 9 P07001. arXiv:1405.7243 < D > < D > < E > < E > E = <0 < u #### Shift in dip location in reconstructed muon observables - Statistical uncertainty calculated using 100 simulated sets of 10-year data. - The location of dip d^- or d^+ depends on magnitude as well as sign of $\varepsilon_{\mu\tau}$. - d^- and d^+ shift in the opposite direction due to $\varepsilon_{\mu\tau}$. - d^- and d^+ shift in the same direction due to change in Δm_{32}^2 . - New variable $\Delta d=d^--d^+$ depends on $\varepsilon_{\mu\tau}$ but independent of Δm_{32}^2 (true). ### Constraints on $\varepsilon_{u\tau}$ from measurement of Δd - ullet We calibrate $arepsilon_{\mu au}$ with respect to Δd using 1000 yr Monte Carlo. - The 90% C.L. are obtained using multiple simulated sets of 10-year data. - Variation over oscillation parameters: 20 random choices of oscillation parameters for each 10-year simulated data set, according to the Gaussian distribution using σ from current global fit. - Systematics errors with Gaussian distributions: overall flux normalization (20%), cross sections (10%), energy dependence (5%), zenith angle dependence (5%), and overall systematics (5%). #### 90% C.L.: - Fixed param., no syst: $-0.024 < \varepsilon_{\mu\tau} < 0.020$ - Varied param., with syst.: $-0.025 < \varepsilon_{\mu\tau} < 0.024$ ### Oscillation valley in neutrino survival probability The presence of NSI results in the curvature of oscillation valley (dark blue diagonal band). Anil Kumar et al., JHEP 2021, 159 (2021), arXiv: 2101.02607 # Curvature of Oscillation Valley in Reconstructed Muon #### **Observables** - Mean of 100 U/D distribution for 10 year data in presence of NSI ($\varepsilon_{\mu\tau}=-0.1$ and 0.1). - Solid black and dashed black lines show conical cut of $\log_{10} L/E = 2.2$ and $\log_{10} L/E = 3.1$ respectively which includes bins used for fitting. - For $\Delta_{21}^2 L/4E \to 0$, $\theta_{13} = 0$, and $\theta_{23} = 45^\circ$ (arXiv:1410.6193), $P(\nu_{\mu} \to \nu_{\mu}) = \cos^2 \left[L \left(\frac{\Delta m_{32}^2}{4E} + \varepsilon_{\mu\tau} V_{CC} \right) \right]$ - Solid white and dashed white lines show contours with U/D ratio of 0.4 and 0.5 respectively for fitted function $f(x,y) = z_0 + N_0 \cos^2\left(m_\alpha \frac{x}{y} + \alpha x^2\right)$. The parameter α is the measure of the curvature of oscillation valley and contains the information about $\varepsilon_{\mu\tau}.$ # Constraints on $\varepsilon_{\mu\tau}$ using curvature of oscillation valley $$\Delta m_{\alpha} = m_{\alpha^-} - m_{\alpha^+}$$ and $\Delta \alpha = \alpha^- - \alpha^+$ #### 90% C.L.: - Fixed param., no syst: $-0.022 < \varepsilon_{\mu\tau} < 0.021$ - Varied param., with syst.: $-0.024 < \varepsilon_{\mu\tau} < 0.020$ #### Conclusion - Using good reconstruction efficiency at ICAL for μ^- and μ^+ , oscillation dip and oscillation valley can be observed in reconstructed muon observables at ICAL. - We propose a new approach to utilize oscillation dip and oscillation valley to probe neutral-current NSI parameter $\varepsilon_{\mu\tau}$. - A new variable representing the difference in the shifts in location of dips for μ^- and μ^+ is used to constrain NSI parameter $\varepsilon_{\mu\tau}$. - The contrasts in the curvature of valleys for μ^- and μ^+ is used to constrain NSI parameter $\varepsilon_{\mu\tau}$. **Acknowledgement:** We acknowledge financial support from the Department of Atomic Energy (DAE), Department of Science and Technology (DST), Govt. of India, and the Indian National Science Academy (INSA). # Thank you ### Backup: Identifying the dip - The left panel shows 5 representative set of 10-year simulated data and thick black line shows mean of 100 simulated sets of 10-year data. - The right panel shows dip identification algorithm where we start with initial ratio threshold which is shown as dashed black line. - If ratio threshold passes through more than one dip then we decrease the ratio threshold. - The blue dashed line shows the final ratio threshold which passes through only single oscillation dip. - ullet The bins with U/D ratio less than final ratio threshold are fitted with parabola to obtain location of dip. 1/5 # Backup: Variation of oscillation parameters We first simulated 100 statistically independent unoscillated data sets. Then for each of these data sets, we take 20 random choices of oscillation parameters, according to the gaussian distributions $$\begin{array}{l} \Delta \textit{m}_{21}^2 = (7.4 \pm 0.2) \times 10^{-5} \text{ eV}^2 \; , \Delta \textit{m}_{32}^2 = (2.46 \pm 0.03) \times 10^{-5} \text{ eV}^2 \; , \\ \sin^2 2\theta_{12} = 0.855 \pm 0.020 \; , \; \sin^2 2\theta_{13} = 0.0875 \pm 0.0026 \; , \; \sin^2 \theta_{23} = \cos^2 \theta_{23} = 0.0026 \; , \; \sin^2 \cos^2 0.00$$ guided by the present global fit. We keep $\delta_{\rm CP}=$ 0, since its effect on ν_{μ} survival probability is known to be highly suppressed in the multi-GeV energy range. This procedure effectively enables us to consider the variation of our results over 2000 different combinations of oscillation parameters, to take into account the effect of their uncertainties. 0.50 ± 0.03 . #### Backup: Systematics uncertainties The five uncertainties are (i) 20% in overall flux normalization, (ii) 10% in cross sections, (iii) 5% in the energy dependence, (iv) 5% in the zenith angle dependence, and (iii) 5% in overall systematics. For each of the 2000 simulated data sets, we modify the number of events in each $(E_\mu^{\rm rec},\cos\theta_\mu^{\rm rec})$ bin as $$\textit{N} = \textit{N}^{(0)}(1+\delta_1)(1+\delta_2)(\textit{E}_{\mu}^{\rm rec}/\textit{E}_0)^{\delta_3}(1+\delta_4\cos\theta_{\mu}^{\rm rec})(1+\delta_5) \; , \label{eq:N_spectrum}$$ where $N^{(0)}$ is the theoretically predicted number of events, and $E_0=2$ GeV. Here $(\delta_1,\delta_2,\delta_3,\delta_4,\delta_5)$ is an ordered set of random numbers, generated separately for each simulated data set, with the gaussian distributions centred around zero and the 1σ widths given by (20%,10%,5%,5%,5%). # Backup: $P(\nu_{\mu} \rightarrow \nu_{\mu})$ in presence of NSI Location of dip shits in the presence of NSI. Anil Kumar et al., JHEP 2021, 159 (2021), arXiv: 2101.02607 ### Backup: Event distribution in presence of NSI Anil Kumar et al., JHEP 2021, 159 (2021), arXiv: 2101.02607