in *Visibles* neutrinos, dark matter & dark energy physics

Invisibles 2021 Workshop

ABSTRACT

The Standard Model (SM) singlet right-handed neutrinos (RHNs) are essential fields in many neutrino mass models. In type-I seesaw model, RHNs interact with SM particles via suppressed mixings, which makes their discovery at collider experiments in general challenging. We instead explore a non-minimal production mechanism of the RHN via leptoquark decay at the proposed Large Hadron electron Collider. We consider a long lived and heavily boosted RHN, that leads to a displaced fat jet signature. We show that the track based variables are useful in the identification of such signature. Employing a positron beam further provides order of magnitude enhancement in the signal sensitivity.

RHN DECAY

• For the chosen mass scales, the dominant decays of N are mediated via an off-shell R_2 . The contributions of SM mediators are suppressed by small mixings of N with SM neutrinos.

• The partial decay widths are, $\Gamma(N \rightarrow$ $e^{-}u\bar{d}/e^{+}\bar{u}d) = N_{c} \frac{|Z_{11}|^{2}|Y_{11}|^{2}M_{N}^{5}}{512\pi^{3}M_{LO}^{4}}\mathcal{I}.$ The BRs for $N \rightarrow eq\bar{q}'$ and $N \rightarrow \nu q\bar{q}'$ are 50% each.

• For $M_N = 10(20)$ GeV, $c\tau_N \sim 1(0.01)$ mm. For $M_N \geq 50$ GeV, $c\tau_N < 1 \ \mu m$, which is below the resolution of the LHeC detector, such that N decay cannot be considered as being displaced. Decay length in the laboratory system is $\lambda_N^{\text{lab}} = \beta \gamma c \tau_N$, where $\beta \gamma = |p_N|/M_N > 1$.

SUMMARY

For our benchmark, RHN can be probed with only $\mathcal{L} < 120$ (2) fb^{-1} using $e^{-}(e^{+})$ beam, at the LHeC. For $M_{LQ} > 1$ TeV, the same signature can be studied at FCC-he as well as at pp colliders.

Displaced Neutrino Jets at the LHeC G. Cottin, O. Fischer, S. Mandal, M. Mitra & R. Padhan

THE MODEL

The \tilde{R}_2 leptoquark (LQ) model contains a scalar LQ \tilde{R}_2 , and three RHN states N_i . The LQ has two iso-spin components $\tilde{R}_2(3, 2, 1/6) = (\tilde{R}_2^{\frac{2}{3}}, \tilde{R}_2^{-\frac{1}{3}})^T$, where superscript denotes the electromagnetic charge. The interactions of \tilde{R}_2 with the SM fermions and *N_i* are, [W. Buchmuller *et al.*]

 $\mathcal{L}_{LQ} = -Y_{ij}\bar{d}_R^i e_L^j \tilde{R}_2^{2/3} + (YU_{\text{PMNS}})_{ij}\bar{d}_R^i \nu_L^j \tilde{R}_2^{-1/3} +$ $Z_{ij}\bar{u}_L^i N_R^j \tilde{R}_2^{2/3} + (V_{\text{CKM}}Z)_{ij} \bar{d}_L^i N_R^j \tilde{R}_2^{-1/3} + \text{H.c.}$

We consider only one of the 3 RHNs, $Z_{11} \neq 0$, $Y_{11} \neq 0$ and other $Y_{ij}, Z_{ij} = 0$. Thus $\tilde{R}_2^{2/3}$ can decay to both ed and Nu states, with branching ratios (BRs) β_{ed} and β_{Nu} , respectively.

DISPLACED FATJET

N with $M_N \sim \mathcal{O}(10)$ GeV will be boosted as it is produced from a LQ of mass $M_{LQ} = 1$ TeV. This leads to very small angular separation between its decay products. The $\Delta R(eq)$ distribution of closest lepton-quark pair, shows that a sizeable fraction of the decays fails to satisfy the standard lepton isolation criterion, $\Delta R(\ell, j) > 0.4$. Hence, *N* decay products can be reconstucted as a single large radius jet, called as a "fatjet". Thus, the very specific signature under investigation is a fat jet that originates from a RHN displaced vertex and is accompanied by a prompt jet: $e^{\pm}p \rightarrow jN \rightarrow jN$ $j + j_N^{\text{displaced-fat}}$, where $j_N^{\text{displaced-fat}}$ denotes the displaced and collimated decay products of the RHN.

• From Atomic parity violation experiment : $Y_{11} < 0.34 \frac{M_{LQ}}{1 \text{ TeV}}$. [I. Dorsner *et al.* JHEP (2014)] • From LQ search in channel $pp \rightarrow LQLQ \rightarrow \ell j \ell j$, at $\sqrt{s} = 13$ TeV LHC : $M_{LQ} > 1.8$ TeV for $\beta_{ed} = 1$. This limit can be relaxed if $\beta_{ed} < 1$ as shown in figure below. Star mark represent our benchmark: $M_{LQ} = 1$ TeV, $Y_{11} = 0.2$ and $Z_{11} = 1$.

Figure 1: Distribution of various observables for signal and e^-j , e^-b background. Left, Middle, and right panel: R_T distribution of the tracks, invariant mass distribution of j_N , distribution of r_E for displaced jet.

G. Cottin, O. Fischer, S. Mandal, M. Mitra & R. Padhan, arXiv: 2104.13578 [hep-ph].

CONSTRAINTS

PRODUCTION OF RHN @LHEC

• The production of N, $e^-p \rightarrow Nu$ is dominated by LQ mediated channels. Production via leptonic mixing completely negligible.

• As evident from figure below, use of e^+ beam instead of e^- beam, enhances the cross-sections, which can be increased further if polarised beam is used.

Selection cuts:

• Transverse displacement: $\mathbf{R_T} = \sqrt{\mathbf{X^2} + \mathbf{Y^2}}$ Displaced track $\Rightarrow 50 \ \mu m < R_T < 312 \ mm$.

- $p_T(trk) > 1$ GeV. [LHeC, FCC-he Study Group]
- $\mathbf{r_N} = \frac{\mathbf{N_{trk}(displaced)}}{\mathbf{N_{total-trk}}}$. Jet with highest $r_N \Rightarrow$ displaced jet (j_N) . $\mathbf{r_E} = \frac{\boldsymbol{\Sigma}\mathbf{E}(\mathbf{displaced} - \mathbf{trk})}{\boldsymbol{\Sigma}\mathbf{E}(\mathbf{trk})}$.
 - In r_E distribution signal and light jet background are complimentary to each other.
- Events are select with $N_{jet} \ge 2$ and $p_T \ge 50$ GeV for all jets. Further cuts on displaced

REFERENCE

jet: $r_N \ge 0.5, r_E \ge 0.5, p_T(j_N) \ge 150 \text{ GeV}$ and $\mathbf{M}(\mathbf{j}_{\mathbf{N}}) = \mathbf{M}_{\mathbf{N}} \pm \mathbf{3} \text{ GeV}.$

M_N	n_{σ}	$\mathcal{L} [fb^{-1}]$	\mathcal{Y}^{ex}
10 GeV	6.0 (41.5)	34.0 (0.7)	0.067 (0.035)
20 GeV	4.7(39.7)	56.8 (0.8)	0.059 (0.017)
30 GeV	3.3 (30.4)	116.6 (1.3)	0.047 (0.013)

respectively.

Table 1: n_{σ} is the signal significance with 50 fb⁻¹ luminosity. \mathcal{L} is the required luminosity to achieve 5σ significance. \mathcal{Y}^{ex} represents 2σ exclusion on Y_{11} . Numbers without (within) brackets corresponds to e^{-} (e^{+}) beam,

CONTACT INFORMATION

Rojalin Padhan. Email: rojalin.p@iopb.res.in Web : https://www.iopb.res.in/