
Invisibles 2021 Workshop Poster Session-Online, May 31th-June 4th, 2021

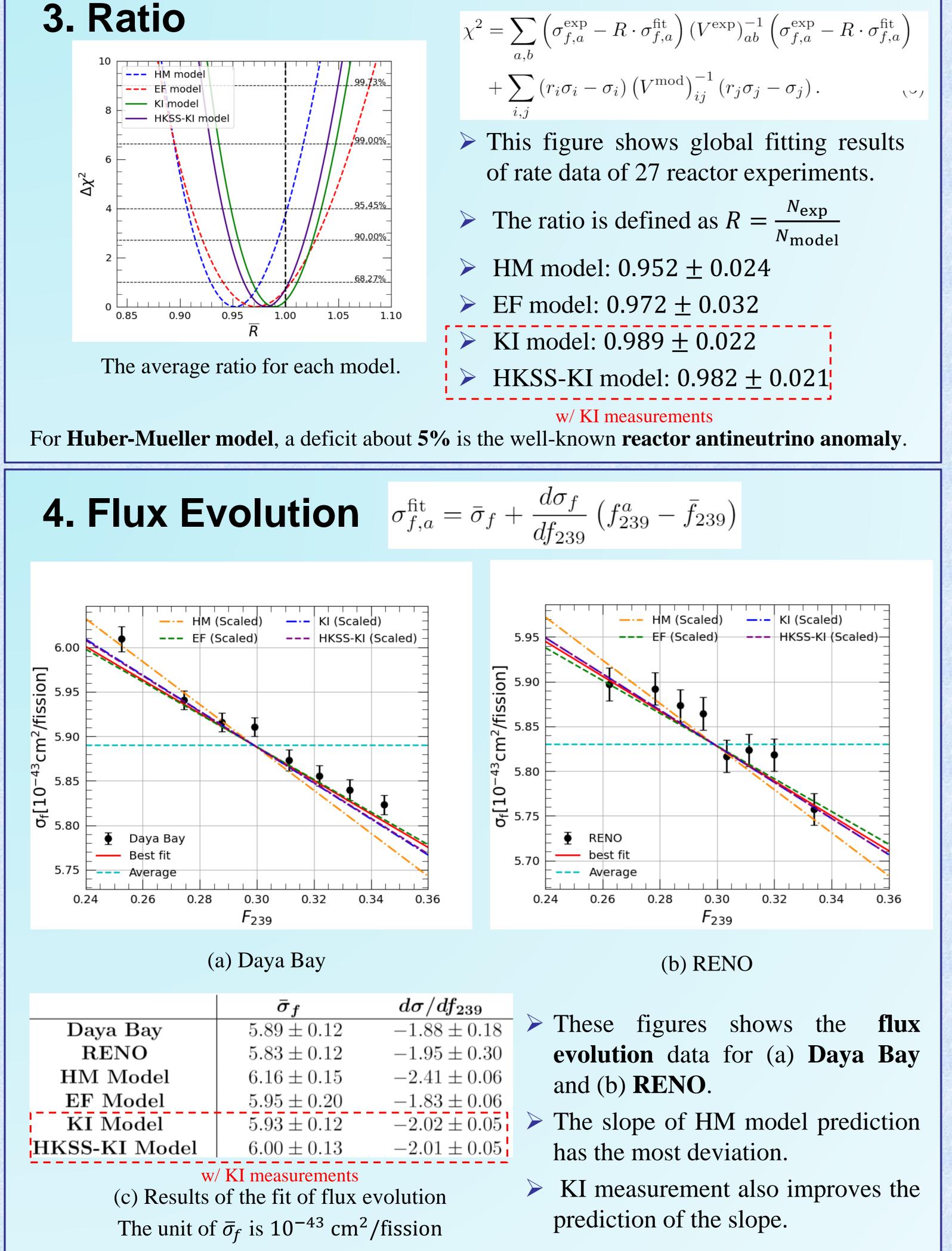
Reactor Antineutrino Anomaly in Light of Recent Flux Model Refinements

C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin

1. Introduction

- **HM model:** Huber's conversion model based on ILL measurements and Mueller's summation model for ²³⁸U.
- **EF model:** Estienne-Fallot summation model with TAGs data (Pandemoniumfree data).
- **HKSS model:** HM model including **forbidden transition**, improves the **shape** anomaly (bump) partially.
- \succ KI model: Improved HM model with the KI measurement for ²³⁵U, also with improved ²³⁸U converted spectrum based on FRM II.
- \rightarrow HKSS-KI model: Improved HKSS model with the KI measurement for ²³⁵U,

also with improved ²³⁸U converted spectrum based on FRM II.


2. Updated Model Prediction

> The official IBD yields from different references (the unit of σ_i is $10^{-43} cm^2/fission$)

Models	σ_{235}	σ_{238}	σ_{239}	σ_{241}
HM [1][2]	6.69 ± 0.16	10.10 ± 0.82	4.40 ± 0.13	6.03 ± 0.16
EF [3]	6.28 ± 0.31	10.14 ± 1.01	4.42 ± 0.22	6.23 ± 0.31
\mathbf{KI} [4]	6.27 ± 0.13	9.34 ± 0.47	4.33 ± 0.11	6.01 ± 0.13
HKSS [5]	6.74 ± 0.17	10.33 ± 0.85	4.43 ± 0.13	6.07 ± 0.16
HKSS-KI	6.32 ± 0.13	9.56 ± 0.49	4.36 ± 0.11	6.05 ± 0.14

Updated IBD yields w/ Vogel-Beacom IBD cross section [6] & PDG 2020 [7]

Models	σ_{235}	σ_{238}	σ_{239}	σ_{241}	
HM	6.62 ± 0.16	10.09 ± 0.82	4.34 ± 0.12	6.02 ± 0.16	Our global
\mathbf{EF}	6.23 ± 0.31	10.07 ± 1.00	4.37 ± 0.22	6.17 ± 0.31	fitting work
KI	6.31 ± 0.13	9.43 ± 0.47	4.34 ± 0.12	6.02 ± 0.16	is based on the updated
HKSS	6.72 ± 0.16	10.19 ± 0.83	4.40 ± 0.13	6.10 ± 0.16	IBD yields
HKSS-KI	6.37 ± 0.13	9.52 ± 0.47	4.40 ± 0.13	6.10 ± 0.16	of models.

7. Conclusion

 \succ With PDG 2020 inputs, the IBD yield of model prediction is more close to experimental data ($3\sigma \rightarrow 2\sigma$).

- > The KI measurement can improve the **rate deficit**, which implies the reactor antineutrino anomaly might be caused by **mis-normalization** in ILL measurements.
- > The KI measurement also improves the model prediction of flux evolution in Daya Bay and RENO.
- > According KI model and HKSS-KI model, rate anomaly and shape anomaly should be complementary.
- \succ With the KI measurement, the confidence level of active-sterile oscillation decreases.

Reference

[1] T. A. Mueller, *et al.* Phys. Rev. C 83, 054615 (2011) [2] P. Huber, Phys. Rev. C 85, 029901 (2012) [3] M. Estienne, M. Fallot, et al. Phys. Rev. Lett. 123, no. 2, 022502 (2019) [4] V. Kopeikin, *et al.* arXiv:2103.01684 [nucl-ex] [5] L. Hayen, et al. Phys. Rev. C 100, no.5, 054323 (2019) [6] P. Vogel and J. F. Beacom, Phys. Rev. D 60, 053003(1999) [7]] P. A. Zyla *et al.*[Particle Data Group], PTEP 2020, no.8, 083C01 (2020)