

Multi-charged TeV scale scalars in the framework of a radiative seesaw model

avnish@iopb.res.in

Abstract

We are exploring the phenomenology of multi-charged scalars in the framework of a radiative neutrino mass generation model. In particularly, we are interested in the collider signatures of this model at the LHC with $\sqrt{s} = 13$ TeV. We have studied the production, decays and possible signatures of these multicharged scalars at the LHC experiment and suggested required luminosities to discover them. Apart from the Drell-Yan pair production, we have also studied photo-production of these particles.

Model

Symmetry Group: $SU(3)_C \times SU(2)_L \times U(1)_Y$

article⇒	E^{++}	k^{++}	$\Phi_{rac{3}{2}}$	$\Phi_{rac{5}{2}}$
$SU(3)_C$	1	1	1	1
$SU(2)_L$	1	1	2	2
$U(1)_Y$	2	2	3/2	5/2

Yukawa lagrangian:

 $\mathscr{L}_{Y} = m_{E}^{\alpha\beta}\overline{E_{\alpha}^{++}}E_{\beta}^{++} + y_{\frac{5}{2}}^{\alpha\beta}\overline{L_{\alpha L}}\Phi_{\frac{5}{2}}^{*}E_{\beta R}^{++} + y_{\frac{5}{2}}^{\alpha\beta}\overline{L_{\alpha L}}\Phi_{\frac{5}{2}}^{*}E_{\beta R}^{+} + y_{\frac{5}{2}}^{\alpha\beta}\overline{L_{\alpha L}}\Phi_{\frac{5}{2}}^{*}E_{\beta R}^{*} + y_{\frac{5}{2}}^{*}E_{\beta R}^{*} + y_{\frac{5}{2}}^{*} + y_{\frac{5}{2}}^{*} + y_{\frac{5}{2}}^{*} + y_{\frac$ $\alpha, \beta \in 1, 2, 3$ are generation indices.

Scalar Potential:

$$V = \mu(H^T \cdot \Phi_{\frac{3}{2}})k^{--} + \mu'(H^{\dagger}\Phi_{\frac{5}{2}})k^{--}$$
$$\lambda(H^T \cdot \Phi_{\frac{3}{2}})(H^T \Phi_{\frac{5}{2}}^*) + c \cdot c$$

Physical states after mixing of doubly charged Higgs bosons (after EWSB):

$$H_a^{++} = O_{a1}\Phi_{\frac{5}{2}}^{++} + O_{a2}\Phi_{\frac{3}{2}}^{++} + O_{a3}k^{-}$$

 O_{ab} is the mixing matrix.

Neutrino Mass

Invisibles 21 virtual Workshop (online, May 31 to June 4, 2021)

Avnish^{a, b}, Kirtiman Ghosh^{a, b}

^a Institute of Physics, India, ^b Homi Bhabha National Institute, India.

++

