

AIDA-2020 WP5: Data acquisition tools for beam tests

David Cussans, 28/April/20

Outline

- Work Package:
 - Aims
 - Milestones
 - Deliverables
- Hardware (TLU)
- DAQ software (EUDAQ)
 - Data reconstruction
- Monitoring software (DQM4HEP)
- Use of tools by other WP
- Summary

Structure

- Described at https://aida2020.web.cern.ch/activities/wp5-data-acquisition-system-beam-tests
- Four tasks:
 - 5.2 Interface, synchronisation and control of multipledetector systems (TLU)
 - 5.3 Development of central DAQ software and run control (EUDAQ)
 - 5.4 Development of data quality and slow control monitoring (DQM4HEP)
 - 5.5 Event model for combined DAQ

Deliverables

D5.1	Interface definition	M15	05/09/2016
D5.2	Trigger Logic Unit ready	M30	15/12/2017
D5.3	Data acquisition software	M30	06/12/2017
D5.4	Data acquisition hardware	M30	22/12/2017
D5.5	Online event data model	M30	30/11/2017
D5.6	Common DAQ system used in combined beam tests	M57	31/01/2020

Milestones

MS25	Definition of detector interface standards with common DAQ	M15	15/08/2016
MS43	Trigger logic unit (TLU) design ready	M21	06/02/2017
MS46	EUDAQ interfaces to other DAQs available	M24	23/06/2017
MS47	Online event data model available	M24	09/06/2017
MS62	Development of run control ready	M27	31/07/2017
MS66	TLU hardware, firmware and software ready for tests beams	M30	30/11/2017
MS67	Data quality monitoring tools ready	M30	06/11/2017
MS68	Slow control system ready	M30	18/12/2017
MS80	Common DAQ system ready for combined test beams	M36	19/04/2018

Project Status

- Deliverables delivered
- Milestones passed
- Congratulations to all involved.
 - Alas, Champagne / other sparkling wine / etc.
 virtual
- More technical detail about plans after AIDA-2020 during <u>WP5 parallel session</u>

After AIDA-2020

- Gap between end of AIDA-2020 and (possible) start of AIDAinnova
- Retain maximum usefulness of tools developed
 - Produce more TLUs
 - Continue "roll out" of EUDAQ2 and AIDA TLUs

TLU - Documentation

CAD Drawing, 19-inch TLU

TLU in use, ProtoDUNE-SP

New publication

- https://doi.org/10.1088/1748-0221/14/09/p09019 "The AIDA-2020 TLU: a flexible trigger logic unit for test beam facilities", JINST
- Open Hardware project "AIDA-2020 TLU"
 - https://ohwr.org/project/fmc-mtlu
 - Hardware design files
 - Firmware source code
 - User manual

d innovation programme under grant agreement No 654168.

TLU Production

- New hardware version
 - Minor bug fixes (saves effort hand-patching)
 - Three PCBs produced.
 - Delivery due 29th April
 - Only basic test facilities available (in a domestic setting)
 - Verify design for production run
 - Production of TLUs by DESY
 - Contact Lennart Huth

AIDAInnova TLU

- Aim: (tens of) Picosecond Timing
 - EUDET TLU Precision ~ 100ns
 - AIDA/AIDA-2020 Precision ~ 1ns
- Use external TDC chip?
 - PicoTDC?
- ADC for time-walk correction?
- ~ 8 inputs
- >= 4 "DUT Interfaces
 - Move away from HDMI → Display Port
 - Passive adaptor HDMI ← → Display port
 - More robust. Better signal integrity on trigger line

- Developed in EUDET and developed in AIDA, AIDA-2020
- Extended to make more useful for other detectors in addition to pixel trackers
 - CALICE, Lycoris strip tracker
- Publications:
 - EUDAQ—a data acquisition software framework for common beam telescopes, https://doi.org/10.1088/1748-0221/15/01/P01038
 - EUDAQ2 -- A Flexible Data Acquisition Software Framework for Common Test Beams , https://doi.org/10.1088/1748-0221/14/10/P10033

DAQ Toolkit - EUDAQ

- EUDAQ2
 more flexible
 and more
 scalable
- EUDAQ 1.x support will continue until 2021, then move to bugfix only.

Event Model

- Event data structure changed to allow trigger-less and/or self triggered detectors
- Data "frames" labelled with time-stamp and/or trigger number
- Can mix detectors with different integration periods
 - e.g. have multiple triggers associated with a single rolling-shutter pixel detector frame.
 - Increase effective trigger rate by >10 at high rate beamlines.

Reconstuction

- Reconstruction tools not covered by AIDA-2020
- Extensive use of EUtelescope to reconstruct beam telescope data
 - Not well suited to mixing detectors with different integration periods
 - Needed for high rate with Mimosa telescopes
- Increasing use of Corryvreckan reconstruction framework.
 - Allows mixing detectors with different integration periods

Monitoring Tools

- AIDA-2020 adopted <u>DQM4HEP</u> to provide more flexible and extensible monitoring
- Provided near-online DQM for Calice beam tests
 - Conference report
 https://doi.org/10.1109/NSSMIC.2017.853259

Monitoring Tools

- AIDA-2020 stopped before on-line integration achieved
- Online, as well as nearonline, a goal of AIDAinnova

Collaboration within AIDA

- Close relationship with other WP.
 - e.g. Calorimetry ,
 Beamtelescopes.
 - Use of WP5 tools for WP15 silicon strip tracker.

WP5 Summary

- Consolidation and deployment of developments made in AIDA
- Addition developments allowing combined beam tests of different detector types
 - e.g. Calorimeter, pixel sensor, strip sensor
- Has provided a "standard" set of tools for beam-lines at DESY and CERN
 - Providing infrastructure that helps developers of detectors
- Well placed to Innovate in AIDAinnova.....

AIDA-2020 WP5: Data acquisition tools for beam tests

Outline

- Work Package:
 - Aims
 - Milestones
 - Deliverables
- Hardware (TLU)
- DAQ software (EUDAQ)
 - Data reconstruction
- Monitoring software (DQM4HEP)
- Use of tools by other WP
- Summary

Structure

- Described at https://aida2020.web.cern.ch/activities/wp5-data-acquisition-system-beam-tests
- · Four tasks:
 - 5.2 Interface, synchronisation and control of multipledetector systems (TLU)
 - 5.3 Development of central DAQ software and run control (EUDAQ)
 - 5.4 Development of data quality and slow control monitoring (DQM4HEP)
 - 5.5 Event model for combined DAQ

Deliverables

D5.1	Interface definition	M15	05/09/2016
D5.2	Trigger Logic Unit ready	M30	15/12/2017
D5.3	Data acquisition software	M30	06/12/2017
D5.4	Data acquisition hardware	M30	22/12/2017
D5.5	Online event data model	M30	30/11/2017
D5.6	Common DAQ system used in combined beam tests	M57	31/01/2020

Milestones

MS25	Definition of detector interface standards with common DAQ	M15	15/08/2016
MS43	Trigger logic unit (TLU) design ready	M21	06/02/2017
MS46	EUDAQ interfaces to other DAQs available	M24	23/06/2017
MS47	Online event data model available	M24	09/06/2017
MS62	Development of run control ready	M27	31/07/2017
MS66	TLU hardware, firmware and software ready for tests beams	M30	30/11/2017
MS67	Data quality monitoring tools ready	M30	06/11/2017
MS68	Slow control system ready	M30	18/12/2017
MS80	Common DAQ system ready for combined test beams	M36	19/04/2018

Project Status

- Deliverables delivered
- Milestones passed
- Congratulations to all involved.
 - Alas, Champagne / other sparkling wine / etc.
 virtual
- More technical detail about plans after AIDA-2020 during <u>WP5 parallel session</u>

After AIDA-2020

- Gap between end of AIDA-2020 and (possible) start of AIDAinnova
- Retain maximum usefulness of tools developed
 - Produce more TLUs
 - Continue "roll out" of EUDAQ2 and AIDA TLUs

TLU - Documentation

CAD Drawing, 19-inch TLU

TLU in use, ProtoDUNE-SP

- New publication
 - https://doi.org/10.1088/1748-0221/14/09/p09019 "The AIDA-2020 TLU: a flexible trigger logic unit for test beam facilities", JINST
- Open Hardware project "AIDA-2020 TLU"
 - https://ohwr.org/project/fmc-mtlu
 - Hardware design files
 - Firmware source code
 - User manual

-

nd innovation programme under grant agreement No 65416

TLU Production

- New hardware version
 - Minor bug fixes (saves effort hand-patching)
 - Three PCBs produced.
 - Delivery due 29th April
 - Only basic test facilities available (in a domestic setting)
 - · Verify design for production run
 - Production of TLUs by DESY
 - Contact Lennart Huth

AIDAInnova TLU

- Aim: (tens of) Picosecond Timing
 - EUDET TLU Precision ~ 100ns
 - AIDA/AIDA-2020 Precision ~ 1ns
- Use external TDC chip?
 - PicoTDC ?
- · ADC for time-walk correction?
- ~ 8 inputs
- >= 4 "DUT Interfaces
 - Move away from HDMI → Display Port
 - Passive adaptor HDMI ← → Display port
 - More robust. Better signal integrity on trigger line

- Developed in EUDET and developed in AIDA, AIDA-2020
- Extended to make more useful for other detectors in addition to pixel trackers
 - CALICE, Lycoris strip tracker
- Publications:
 - EUDAQ—a data acquisition software framework for common beam telescopes, https://doi.org/10.1088/1748-0221/15/01/P01038
 - EUDAQ2 -- A Flexible Data Acquisition Software Framework for Common Test Beams, https://doi.org/10.1088/1748-0221/14/10/P10033

- EUDAQ2
 more flexible
 and more
 scalable
- EUDAQ 1.x support will continue until 2021, then move to bugfix only.

Event Model

- Event data structure changed to allow trigger-less and/or self triggered detectors
- Data "frames" labelled with time-stamp and/or trigger number
- Can mix detectors with different integration periods
 - e.g. have multiple triggers associated with a single rolling-shutter pixel detector frame.
 - Increase effective trigger rate by >10 at high rate beamlines.

Reconstuction

- Reconstruction tools not covered by AIDA-2020
- Extensive use of EUtelescope to reconstruct beam telescope data
 - Not well suited to mixing detectors with different integration periods
 - Needed for high rate with Mimosa telescopes
- Increasing use of Corryvreckan reconstruction framework.
 - Allows mixing detectors with different integration periods

Monitoring Tools

- AIDA-2020 adopted <u>DQM4HEP</u> to provide more flexible and extensible monitoring
- Provided near-online DQM for Calice beam tests
 - Conference report
 https://doi.org/10.1109/NSSMIC.2017.853259

Monitoring Tools

- AIDA-2020 stopped before on-line integration achieved
- Online, as well as nearonline, a goal of AIDAinnova

Collaboration within AIDA

- Close relationship with other WP.
 - e.g. Calorimetry ,
 Beamtelescopes.
 - Use of WP5 tools for WP15 silicon strip tracker.

WP5 Summary

- Consolidation and deployment of developments made in AIDA
- Addition developments allowing combined beam tests of different detector types
 - e.g. Calorimeter, pixel sensor, strip sensor
- Has provided a "standard" set of tools for beam-lines at DESY and CERN
 - Providing infrastructure that helps developers of detectors
- Well placed to Innovate in AIDAinnova.....

