

Infrastructure for advanced calorimeters

WP14 Final Report

F. Simon, R. Pöschl

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168.

AIDA-2020 Annual Meeting Aprr. 29, 2020

WP14 Introduction

Calorimeters are key components of HEP detectors - and an area that is currently seeing quite rapid evolution

29/04/2020

LHC Phase II Upgrades

WP14 in AIDA2020

29/04/2020

AIDA-2020 Final Meeting

The Tasks/Topics of WP14

- 14.1 Scientific coordination (MPP-MPG, CNRS-LAL)
- 14.2 Test infrastructure for innovative calorimeters with <u>optical readout</u> 14.2.1 Test benches for characterisation of organic and inorganic scintillator material (CERN [CERN, RINP, Brunel], INFN [Torino, Roma, MiB, UNIMiB], VU, ETHZ) **14.2.2** Test benches for the characterisation of highly granular calorimeter elements with scintillator and SiPM readout (JGU, DESY [Uni Heidelberg], MPG-MPP, UiB, IPASCR
- 14.3 Test infrastructure for innovative calorimeters with <u>semiconductor readout</u> **14.3.1** Assembly and QA Chain for silicon-based ECALs (CNRS [LLR, LAL, LPNHE], CERN [CERN, Imperial]) **14.3.2** Infrastructure for very compact Tungsten based calorimetry (DESY [Zeuthen], AGH-UST, TAU [Tel Aviv, IFJPAN], Vinca)
- 14.4 <u>Readout systems</u> for innovative calorimeters
 - **14.4.1** LC Calorimetry specific DAQ interfaces (IPASCR, CNRS [IPNL, LLR], DESY [Hamburg]) **14.4.2** Low Power Readout & Monitoring systems (CNRS [LAL, IPNL], DESY [Hamburg, Uni Wuppertal])
- 14.5 <u>Mechanical and thermal tools</u> for innovative calorimeters
 - **14.5.1** Precision mechanics for calorimeter structures (CIEMAT [Madrid]) **14.5.2** Infrastructure to evaluate thermal properties of calorimeter structures (CNRS [LPSC], DESY [Hamburg])

WP14 Participants

- Beneficiaries
 - AGH-UST
 - CERN
 - CIEMAT
 - CNRS IPNL, LAL, LLR, LPNHE, LPSC
 - DESY
 - ETHZ
 - INFN MI, RTV, TO
 - IPASCR
 - JGU
 - MPG-MPP
 - TAU
 - UiB
 - VU

 Associated Partners - receive funding through beneficiaries • CERN: Brunel, Imperial, Minsk • DESY: U HD, U W • INFN: UniMIB • TAU: IFJPAN

WP14 Participants

- Two task leaders for each task to provide expertise in all topics within a task and to represent the full breadth of the WP14 community
- Work package leaders (and Task 14.1): Roman Pöschl (CNRS-LAL), Frank Simon (MPG-MPP)
- Task 14.2: Etiennette Auffray (CERN), Lucia Masetti (JGU)
- Task 14.3: Vincent Boudry (CNRS-LLR), Marek Idzik (AGH-UST)
- Task 14.4: Katja Krüger (DESY), Dirk Zerwas (CNRS-LAL)
- Task 14.5: MaryCruz Fouz (CIEMAT), Denis Grondin (CNRS-LPSC)
- Technology Transfer Officer (TTO): Etiennette Auffray (CERN)

WP14 Overall Status

Ti	ïtle
D14.1 Fi	ibre test benches
D14.2 P	Performance of test infrastructure for highly granular optical readout
D14.3 A	dvanced assembly chain for Si calorimeters
D14.4 V	ery compact calorimeters
D14.5 <mark>C</mark>	Common running of calorimeter prototypes
D14.6 U	Ipdated readout system
D14.7 <mark>E</mark>	electron beam welding demonstrator
D14.8	arge leak-less system, thermal model

- 8/8 of deliverables completed
- Deliverable 14.4 completed on-time at the end of January 2020
- WP14 Face-to-Face Meeting on 13/2/20 with summaries and outlooks
 - https://indico.cern.ch/event/881136/

Lead Ben.	Task	Month		
CERN	14.2.1	47		
MPG-MPP	14.2.2	40		
CNRS	14.3.1	36		
AGH-UST	14.3.2	57		
DESY	14.4.1	36		
CNRS	14.4.2	44		
CIEMAT	14.5.1	42		
DESY	14.5.2	36		

WP 14 – High Level Summary

- 17 Meetings since May 2015
 - Five (annual) Face-to-Face Meetings at CERN
 - ... with guest contributions from other workpackages WP 3,4,5
 - Twelve Taskleader Meetings between AIDA2020 Annual Meetings
- Publications

Publication Score Board

WP	No. of journal publications	No.of conference/ workshop proceedings	Other publications	Total
14	19	16	27 presentations 4 scientific notes 5 poster	71

*Own accounting on basis of 'official' scoreboard plus pubs transmitted to management last week

WP 14 – OnTrack Articles

New CALICE calorimeter sees beam

New CALICE calorimeter sees beam

Barbara Warmbein (DESY), 12/07/2018

AIDA-2020 Final Meeting

July 2018

Gearing up to final form

Barbara Warmbein (DESY), 11/12/2017

The SiW-ECAL team at DESY (Image: DESY)

Dec. 2017

Test benches up and running: tick

Barbara Warmbein, 25/05/2019

Setup of the pump-and-probe testbench in Vilnius, Lithuania. (Image: AIDA-2020 WP14)

July 2019

WP 14 – Topical Workshop

Energy and time measurement with high-granularity silicon devices

Monday 13 June ,14:00 - 18:00 Tuesday 14 June, 9:00 - 12:00

Scientific organising committee : Marcello Mannelli (CERN). Roman Pöschl (CNRS), Abraham Seiden (Santacruz)

Workshop on energy and time measurement with silicon devices

13/6/16 – 14/6/16 DESY/Hamburg during AIDA-2020 Annual Meeting

https://indico.cern.ch/event/468478/overview

Summary : arxiv:1704.01304, AIDA-2020-NOTE-2017-005

29/04/2020

WP 14 – Task 14.2.1

Deliverable D14.1 "Fiber Test Benches"

A wide range of characterisation tools for f bers: Test benches

Test beam infrastructure

Timing response

. . .

transparency & absorption radiation hardness...

29/04/2020

AIDA-2020 Final Meeting

ADA 14.2.1 – Potential future project – LHCb Upgrade Phase II

- Timing resolution ~10ps
- Good energy resolution
- Crystal fibres could be a solution

Work continues in frame of LHCb upgrade, Crystal Clear and EP-RD WG3

 New compact prototype with pure tungsten • Fabricated by Crytur

 9 cells 1.5x1.5cm² made of 1x1mm² fibres with long. Segmentaion of 4+10cm • Crystal fibres :

3 GAGG cells from FOMOS

6 YAGG cells from CRYTUR

AIDA-2020 Infrastructure

SiPM/Scint. Scanner - MPP

15 cm range translation stages inside the climate chamber SiPM Gain Stability – UB, Prague

Cosmic Test Bench - JGU

SiPM Characterisation – UHEID

CALICE Scintillator/SiPM hadron calorimeter

Application to e.g. DUNE ND under study

AIDA-2020 Final Meeting

User

Task 14.2.2 – Use cases

Tile misalignment studies (position of dimple)

Evaluating the Meg

29/04/2020

Measurement of light yield asymmetry

 AIDA2020 enabled these tests that are central for future detectors with large area scintillation detectors

9
$\overline{\mathbf{O}}$

gatile	э (Cc L	on .igl	Ce nt เ	e pt uni	for	rmi	ty	ma			,		
L	15.192	21.796	22.042	20.966	21.261	21.729	22.622	20.291	20.222	21.889	20.16	0,		45
к	19.944	25.123	34.104	32.082	32.718	33.054	33.340	32.333	30.566	31.960	28.828	-	6	40
J	18.770	31.640	35.562	33.497	35.861	33.604	33.716	31.901	30.462	33.299	29.531	21.666	9	
	19.106	29.399	32.146	34.765	34.195	34.892	33.181	33.623	32.208	29.549	29.784	19.127		35
н	18.821	28.217	26.824	35.795	33.445	33.313	33.792	33.350	35.075	31.481	29.229	20.048	-	30
G	18.280	27.176	24.136	30.799	32.320	32.825	34.511	33.894	31.908	31.815	29.872	20.433		25
F	17.342	26.381	29.375	30.133	30.469	32.132	33.549	33.768	33.026	24.364	29.308	18.666		25
E	17.623	26.644	29.250	29.646	29.561	31.719	33.967	31.477	31.646	31.416	29.928	18.716	-	20
D	18.223	28.337	29.488	29.028	29.994	31.916	32.993	29.878	31.486	31.987	31.120	21.037		15
с	19.647	30.729	31.260	31.084	31.392	32.780	33.927	32.271	32.203	32.353	30.608	18.796		15
в	19.709	22.682	31.380	30.542	32.012	33.047	30.862	30.834	30.929	31.221	30.887	17.493	-	10
A	15.204	21.836	21.209	21.794	21.302	21.917	20.426	20.721	20.805	21.388	20.878	14.678		-
	A	В	С	D	Е	F	G	н	I	J	к	L		5

Assembly of current SiW Ecal prototype

AIDA-2020 Final Meeting

29/04/2020

15

AIDA²⁰²⁰ Task 14.3.1 – Prototype construction

- Total ~15 layers constructed
- 1024 channels per layer
- Beam tests at DESY and CERN since 2016
 - Nucl.Instrum.Meth.A 950 (2020) 162969 e-Print: 1902.00110 [physics.ins-det]

PCB FEV12

with long adapter card Wafer thickness 325 µm

PCB FEV13

with small adapter card Wafer thickness 650 µm

Assembled in Japan following technique developed within AIDA2020

Task 14.3.2 – Compact caloimetry

- Task : Infrastructure for very compact tungsten-based calorimeters
- Deliverable D14.4: Very compact calorimeters
- Elements of Deliverable:
 - Thin sensor planes and precise tungsten plates
 - FLAME readout ASIC
 - Beam test results
- D14.4 has been postponed from M48 to M57 due to problems with ASIC foundry
 - Achieved on time in M57

Task 14.3.2 – Compact caloimetry

Exploded view of 650um thick sensor plane

Mounted sensor plane

Tungsten plate

• Precise tungsten plates of 140x140x3.5 mm³ and flatness of ~50mum have been developed and produced (more than 30 plates available)

AIDA-2020 Final Meeting

29/04/2020

FLAME Block Diagram

- 32 channel r/o ASIC in CMOS 130nm
- Frontend and ADC in each channel
- Fast serialisation and data transmission
- Arounf 80 ASICs are available

Photograph of bonded FLAME

PCB for 8 FLAMEs (256 channels)

FLAME was succesfully tested. PCB readout board to read the whole sensor tile (256 channels) with 8 FLAME chips was designed and produced.

FLAME also used for CMS HGROC and MDC readout of CMS Experiment

AIDA-2020 Final Meeting

Magnet

- External electronics (No FLAME ASIC yet)
- EUDET Telescope for precise beam position on calorimeter surface

SiW ECAL/SDHCAL (2018)

CALICE meets CMS Common beam tests since 2017

- Benefitted from networking activities such as EUDAQ2 of AIDA2020
- More common beam tests to come after CERN shutdown
- Remark : First common data taking SiW ECAL/AHCAL at DESY had to be postponed due to Corona-Crisis

WP 14.4 – Common beam tests

SiW ECAL/SDHCAL (2018)

CALICE meets CMS Common beam tests since 2017

- Benefitted from networking activities such as EUDAQ2 of AIDA2020
- More common beam tests to come after CERN shutdown
- Remark : First common data taking SiW ECAL/AHCAL at DESY had to be postponed due to Corona-Crisis

AIDA-2020 Final Meeting

WP 14.4 – Common beam tests

Current detector interface card - AHCAL

Current detector interface card - SDHCAL

- "Dead space free" granular calorimeters put tight demands on compactness
- Common development and detailed system integration studies in coming years

AIDA-2020 Final Meeting

Current detector interface card and thin detection unit – SiW Ecal

SL-Board for up to 10000 cells and connection to concentrator unit via flat kapton cable

Elegant space economic solution Seamless operation in DESY beam test 2019

2019: One flat cable leaving the detector

AIDA-2020 Final Meeting

29/04/2020

< 2019: "Jungle" of bulky cables

- Successful demonstration of electron beam welding for the construction of compact calorimeter absorber structures
 - Detailed studies on welding sequence to establish procedure resulting in minimal deformations

Detail of welding (transversal cut zoomed)

- Ongoing construction of 2 x 1 m2 GRPCs for insertion into structure, tests in beam
 - Potential future extension to 3 x 1 m² to fully exploit size of absorber
 - **Observation:** With the prototype, the size limitations of EBW infrastructure in research institutions is reached -
 - Larger machines are available in specialized companies
 - More smaller units are also an option under study

- Successful demonstration of electron beam welding for the construction of compact calorimeter absorber structures
 - Detailed studies on welding sequence to establish procedure resulting in minimal deformations

Detail of

welding

zoomed)

(transversal cut

- Ongoing construction of 2 x 1 m2 GRPCs for insertion into structure, tests in beam
 - Potential future extension to 3 x 1 m² to fully exploit size of absorber
 - **Observation:** With the prototype, the size limitations of EBW infrastructure in research institutions is reached -

Larger machines are available in specialized companies More smaller units are also an option under study

AIDA-2020 Final Meeting

Demonstrator of large leakless loop for CALICE/ILD ECAL

- Thermal model as milestone
- Probes at different heights to establish full model of Cooling system for 13m large detectors

Upper part of the experiment

Detector location Julien Giraud Studies for efficient leak detection Ongoing (Polarographic probe)

Cooling system for CALICE AHCAL Prototype

- Stack of 38 layers equipped
- including power plused operation

PSC.

- Experience with large cooling system established during AIDA2020
- Next major step is full integration with readout electronics at detector extremities (e.g. SL-Boards)

29/04/2020

AIDA-2020 Final Meeting

• Reliable operation during several beam tests in 2018/19 • Operation with overpressure but leakless option foreseen

- We are (almost) done ...
- WP14 has contributed to laying the foundation for ambitious calorimeter projects in the next decades
 - Calorimeters with optical and semiconductor readout
 - Infrastructure for testing and construction
 - WP14 has established new connections between LHC and non-LHC communities that have proven to be highly succesful
- Lots of scientific results obtained in beam tests
 - Thanks to AIDA-2020 TA and the beam test operators and DESY and CERN
 - Operational prototypes will increase the harvest of this workpackage with future (common) beam tests
- Technological progress at many fronts
 - Precise mechanics (e.g. Beam welding and cooling systems)
 - Highly compact readout electronics
- It has been a pleasure to lead this workpackage
 - Thanks to the members of WP14 (physicists, engineers and technicians)
 - ... and to the AIDA-2020 management for confidence and guidance
 - ... and to the AIDA-2020 secretaries Livia and Sabrina for having been always helpful and patient

Backup

4/2/19

- Optical testbenches (Task 2.1) as basis for investigation of new materials with sub 10ps timing
- Optical testbenches (Task 2.2) for development of large area scintillator detectors with SiPM
- Assembly chain for semi-conductor (Task 3.1) r/o as basis for construction of larger prototypes
 - Climate chamber (Task 3.1) in use for construction of CMS HGCAL
- Towards detector integration of compact calorimeters (Task 3.2)
- Continuation of common beam tests
 - e.g. First common data taking CALICE SiW ECAL and CALICE AHCAL was envisaged for this week but got cancelled due to Corona Crisis
- Compact readout (Task 4.1) as basis for advanced prototypes of granular calorimeters and detector integration
 - V2 of compact r/o developed and produced during Winter 2019/20
- Beam welded mechanical structures (Task 5.1) validate mechanical concept of ILD SDHCAL
- Further integration of cooling systems (Task 5.2) into advanced prototypes of granular calorimeters

29/04/2020

Publication Score Board

WP No. of journal publications	No.of conference/ workshop proceedings	Ot
--------------------------------	--	----

ther publications

Total

Cosmic and tile teststands

Detector assembly tools

Compact r/o

Electron beam welding

Common beam tests

AIDA-2020 Final Meeting

29/04/2020

Cooling system(s)

