Positron source discussion

Yongke

Field map comparison

Opera v.s. analytic Bz (fixed peak)

Analytic mu (61.1 m⁻¹) corresponds to optimisation results (B0=6 T, L=180 mm, B_exit=0.5 T, R_exit=20 mm)

Opera v.s. analytic Bz (fixed peak and R)

Opera field 2D vs 1D

- Fringe field in target: not considered
- Distance between target and AMD: 0
- TW parameters: not reoptimised

High peak scenario	Yiled at target exit	Yield at AMD exit	Yield at TW exit	Yield at IL exit	Final yield
2D B	11.0	8.51	2.71	2.35	2.17
1D Bz	11.9	7.32	2.41	2.16	2.01

7% difference

• TW parameters: reoptimised

High peak scenario	Yiled at target exit	Yield at AMD exit	Yield at TW exit	Yield at IL exit	Final yield	
2D B	11.0	8.51	2.71	2.58	2.39	
1D Bz	11.9	7.32	2.41	2.24	2.08	-

13% difference

Theoretical description of 1D Bz

Gaussian

• Modified analytic formula

$$\frac{B_0}{\sqrt{1 + \mu (z - z_0)^2}}$$

$$\mu = 76 \ m^{-1} \text{ (calculated automatically)}$$

Fringe field effect in target

Distance between target and AMD

Medium scenario	e+ yield at Target exit	e+ yield at AMD exit	e+ yield at TW exit	e+ yield at IL exit	Effective e+ yield	Norm. PEDD
Without fringe field	11.9	8.45	2.67	2.54	2.35	28.81 J/g
With fringe field 0 mm distance	11.2	7.20	2.41	2.22	2.11	45.57 J/g
1 mm distance	11.3	7.02	2.30	2.01	1.94	47.54 J/g
2 mm	11.4	7.03	2.28	2.18	1.88	47.13 J/g
5 mm	11.6	7.42	2.47	2.30	2.03	43.00 J/g
10 m	11.6	7.86	2.59	2.41	2.09	38.00 J/g
15 mm	11.8	8.15	2.63	2.37	2.06	36.07 J/g
20 mm	11.8	8.05	2.65	2.32	2.05	34.23 J/g
25 mm	11.9	7.80	2.64	2.29	1.98	33.90 J/g
30 mm	12.00	4.93	1.28	1.10	1.01	67.56 J/g
35 mm	11.86	3.00	0.65	0.51	0.48	140.8 J/g
40 mm	11.90	2.18	0.37	0.30	0.28	247.7 J/g

Some results are not full reoptimised, but it's not necessary for the moment (since the difference should be small)

AMD model optimisation

Enlarged entrance aperture

Comparison with old models

- For simplification, in the table below:
 - Fringe field and distance (Target—AMD) NOT considered

	Scenario	Yield at target exit	Yield at AMD exit	Yield at TW exit	Effective Yield
Opera (Old)	High peak	11.9	6.81	2.05	1.90
	Medium peak		8.51	2.58	2.39
	Low peak		9.29	2.53	2.37
Opera (<mark>New</mark>)	Large aperture		9.38	3.15	2.59
Analytic			4.49	2.64	2.22

- Study in progress
 - Trying to do a fit to get the exp. / log. formula, which is necessary in the RF_Track to construct the shape of AMD

yield. Trying to solve this.

I also tried the formula Hugo provided in one of the emails, but I can't reproduce the function.

The length of the magnet is also strictly the same as the linear case 123.5 mm.

- Very preliminary results
- For simplification, in the table below:
 - Fringe field and distance (Target—AMD) NOT considered

	Yield at target exit	Yield at AMD exit	Yield at TW exit	Effective Yield		
Linear (reference model)	11.0	6.36	0.51	0		
Exponential	11.5	study in progress				

- There must be a problem. Not sure what the problem is. Maybe due to that the input field map files, which have different format as before. To check if there is a mistake there.
- I didn't have enough time to re-optimise the TW parameters. But I don't think that is the reason. Since in the earlier studies, we know that this should have a small effect.

Conclusions

- Realistic (Opera) field map has different shape with analytic formula
- 1D field map gives smaller yield, 7%~13% less than 2D map. Unless the difference can be reduced, otherwise I would suggest we stick to 2D field maps
- Besides, it's very hard to find an theoretical formula to describe the 1D realistic field
- Suggested distance between target and AMD ~25 mm, which perfectly eliminates the effect of fringe field on PEDD, without much loss in final yield
- Enlarged entrance model improved the yield
- Study of exponential aperture model in progress. Before that, we need to find the problem (probably in input field map)
- Injector linac simulation with Placet in progress