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Motivation: Bootstrap

• There has been significant recent progress in bootstrapping
correlation functions and amplitudes.

Bootstrapping the simplest correlator in planar N = 4 SYM at all loops
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We present the full form of a four-point correlation function of large BPS operators in planar
N = 4 Super Yang-Mills to any loop order. We do this by following a bootstrap philosophy based
on three simple axioms pertaining to (i) the space of functions arising at each loop order, (ii) the
behaviour in the OPE in a double-trace dominated channel and (iii) the behaviour under a double
null limit. We discuss how these bootstrap axioms are in turn strongly motivated by empirical
observations up to nine loops unveiled through integrability methods in our previous work [9] on
this simplest correlation function.

I. INTRODUCTION

Integrability methods have shaped a new path for the
explicit evaluation of correlators of local operators in pla-
nar N = 4 SYM [1–5] and also non-planar [6–8], specially
for four-point functions of large protected single-trace op-
erators. In [9] we used integrability-based methods to
find the loop corrections to the polarized four-point func-
tion we named as the simplest. This correlator consists
of four external protected operators with R-charge po-
larizations chosen as shown in figure 1. In the limit of
long operators1 (K � 1), we argued this four-point func-
tion admits a factorization into the tree level part which
carries all the dependence on the external scaling dimen-
sion K and the loop corrections which are given by the
squared of the function O (the octagon)
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In this paper we present some of the analytic properties
of the octagon O which follow from the explicit nine-loop
results in [9]. These properties include a restriction on
the space of functions that appear at any loop order and
the remarkable simplicity of the octagon in two di�erent
kinematical limits: the OPE limit (z ! 1, z̄ ! 1) and
the double light-cone limit (z ! 0, z̄ ! 1).

We also state that these three analytic properties can
be used to uniquely define the octagon and with that

1 The rank of the gauge group Nc ! 1 is the largest parameter
followed by K. Then the planar correlator is expanded in powers
of the ’t Hooft coupling g2.
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FIG. 1. The simplest four-point function with external opera-

tors O1(0, 0) = Tr(Z
K
2 X̄

K
2 )+cyclic permutations, O2(z, z̄) =

Tr(XK ), O3(1, 1) = Tr(Z̄K) and O4(�, �) = Tr(Z
K
2 X̄

K
2 )+

cyclic permutations. The Wick contractions form a perime-
ter with four bridges of width K

2 . According to Hexagonal-
izaiton [3] in the limit K � 1 the loop corrections are ob-
tained by summing over 2D intermediate multiparticle states
�in and �out on mirror cuts 1-4 and 2-3 respectively, with
both sums evaluating to O. Alternatively the octagon O rep-
resents the resummation of planar Feynman diagrams draw
inside(outside) the perimeter.

also the simplest correlator (1). We show how to solve
this bootstrap problem by first introducing a Steinmann
basis of Ladders which resolve two of the aforementioned
analytic properties. Then using the third property to
completely fix the coe�cients in an Ansatz constructed
with the Steinmann basis.

This bootstrap approach reproduces the explicit re-
sults obtained from perturbation theory and integrabil-
ity and allows us to easily extend them to arbitrary loop
order. We accompany this letter with an ancillary file
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Space-time S-matrix and Flux-tube S-matrix at Finite Coupling

Benjamin Basso�, Amit Sever�,� and Pedro Vieira�
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We propose a non-perturbative formulation of planar scattering amplitudes in N = 4 SYM or,
equivalently, polygonal Wilson loops. The construction is based on the OPE approach and introduces
a new decomposition of the Wilson loop in terms of fundamental building blocks named Pentagon
transitions. These transitions satisfy a simple relation to the worldsheet S-matrix on top of the so
called Gubser-Klebanov-Polyakov vacuum which allows us to bootstrap them at any value of the
coupling. In this letter we present a subsector of the full solution to scattering amplitudes which
we call the gluonic part. We match our results with both weak and strong coupling data available
in the literature. For example, the strong coupling Y-system can be understood in this approach.

I. INTRODUCTION

Computing the full S-matrix of a four dimensional
gauge theory at finite coupling might seem impossible.
Conventional techniques, based on perturbation theory,
soon become too cumbersome as the number of loops
increases. Besides, the final results are typically much
simpler than the intermediate steps would suggest. Both
observations beg for an alternative non-perturbative ap-
proach. In the large Nc expansion, a dual two dimen-
sional string theory of ’t Hooft surfaces emerges as such
an alternative description. In some cases, these ’t Hooft
surfaces are integrable and their dynamics can be stud-
ied exactly. This is what happens in N = 4 SYM theory
and has led to the full solution of the problem of com-
puting all two point correlation functions of local opera-
tors [1]. Higher point correlation functions, Wilson loops
(WL) and scattering amplitudes are considerably richer
objects that depend on several external kinematics and
probe string interactions. Since the string material is the
same we expect integrability to help us compute these
observables at any value of the coupling as well.

In this paper we consider planar Scattering Amplitudes
or Null Polygon WLs in N = 4 SYM (in this theory they
are the same [2–4]). We identify a new object, called
Pentagon transition, as the building block of these WLs.
The Pentagon transitions arise naturally in the OPE con-
struction [5] and completely determine the WL at any
coupling. Remarkably, these transitions are directly re-
lated to the dynamics of the Gubser-Klebanov-Polyakov
(GKP) flux tube [6, 7] and can be computed exactly using
Integrability! In this paper we present the most funda-
mental ones, describing the transition of gluonic degrees
of freedom.

II. FRAMING THE WILSON LOOP

Our construction is based on a decomposition of a
general polygon WL into simpler fundamental building
blocks which we will denote as square and pentagon tran-
sitions.

We decompose a polygon into a sequence of null

squares as in figure 1. Any two adjacent squares form
a pentagon.

(a) (b) (c)

�1

�2

�3

va
c

vac

FIG. 1. Decomposition of n-sided Null Polygons into se-
quences of n�3 null squares. Any two adjacent squares form a
pentagon and any middle square is shared by two pentagons.
There are n � 4 pentagons and n � 5 middle squares. Every
middle square in the decomposition shares two of its opposite
cusps with the big polygon; the positions of the other two
cusps (which are not cusps of the big polygon) are fixed by
the condition that they are null separated from their neigh-
bours. For example, in (a) we have an hexagon. It has a single
middle square whose symmetries �, � and � parametrize its
three conformal cross-ratios [5].

Of particular importance are the middle squares that
arise as overlap of two consecutive pentagons. For an n-
edged polygon there are n � 5 middle squares. Each of
them has three symmetries parametrized by a GKP time
�i, space �i, and angle �i for rotations in the two dimen-
sional space transverse to this middle square. We coor-
dinatize all conformally inequivalent polygons by acting
with the symmetries of the i-th middle square on all cusps
to the bottom of that square [9]. The set {�i, �i, �i}

n�5
i=1

parametrizes the 3n � 15 independent conformal cross
ratios of a n-edge null polygon. An explicit definition is
given in figure 2.

We regulate the well understood UV divergences of
the WL using pentagons and squares as defined in fig-
ure 3. These squares and pentagons have no conformal
cross ratios; their expectation values are fixed by con-
formal symmetry [10] and given by the BDS ansatz [11].
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All-order amplitudes at any multiplicity in the multi-Regge limit
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2INFN, Laboratori Nazionali di Frascati, 00044 Frascati (RM), Italy

3School of Physics and Astronomy, University of Southampton, Highfield, SO17 1BJ, United Kingdom
4Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

5SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
6IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom

7DESY Theory Group, DESY Hamburg, Notkestraße 85, D-22607 Hamburg, Germany
8Department of Physics and Astronomy, Uppsala University, 75108 Uppsala, Sweden

We propose an all-loop expression for scattering amplitudes in planar N = 4 super Yang-Mills
theory in multi-Regge kinematics valid for all multiplicities, all helicity configurations and arbitrary
logarithmic accuracy. Our expression is arrived at from comparing explicit perturbative results
with general expectations from the integrable structure of a closely related collinear limit. A crucial
ingredient of the analysis is an all-order extension for the central emission vertex that we recently
computed at next-to-leading logarithmic accuracy. As an application, we use our all-order formula
to prove that all amplitudes in this theory in multi-Regge kinematics are single-valued multiple
polylogarithms of uniform transcendental weight.

Recent years have seen tremendous progress in our un-
derstanding of multi-loop multi-leg scattering amplitudes
in planar N = 4 Super Yang-Mills (SYM) theory. Its
S-matrix exhibits a hidden dual conformal (DC) symme-
try [1], which closes with the ordinary conformal symme-
try into a Yangian algebra [2].

The DC symmetry is broken by infrared (IR) diver-
gences. Such divergences are universal and independent
of the hard scattering process and it is possible to con-
struct DC-invariant functions by considering ratios where
all IR-divergences cancel. We denote by RN the IR-
finite ratio of the N -point color-ordered amplitude and
the Bern-Dixon-Smirnov (BDS) amplitude [3], defined
(loosely) as the exponential of the one-loop amplitude
multiplied by the cusp anomalous dimension �cusp [4].
DC-invariance dictates that RN only depends on 3N�15
independent cross-ratios. In particular, RN is trivial for
N � 5 [5], and is known analytically in general kinemat-
ics for N = 6 through seven loops [6–17] and for N = 7
through four loops [18–22].

Explicit data for small N reveals that the perturba-
tive expansion of RN can often be expressed in terms
of a class of iterated integrals known as multiple poly-
logarithms (MPLs) [23]. Moreover only MPLs of (tran-
scendental) weight 2L contribute to an L-loop amplitude,
where weight is the number of iterated integrations.

The mathematical beauty and simplicity of the avail-
able perturbative results hint at some deeper structure
governing amplitudes in planar N = 4 SYM. This is cor-
roborated by the fact that infinite-dimensional symme-
tries, like the Yangian symmetry of N = 4 SYM, are
a hallmark of integrability. One should then be able to

pN ,�

pN�1,+

p1,�

p2,+ p3, h1 p4, h2 pN�3, hN�5 pN�2, hN�4

. . . . . .z1

�1

�1

zN�5

�N�5

�N�5

I1 ĪN�5C̃12 C̃N�6,N�5

Figure 1. Fourier-Mellin factorisation of 2 � N � 2 gluon
amplitude in multi-Regge kinematics.

compute RN at any value of the coupling. A major step
in this direction was taken in [24–28], where it was ar-
gued that amplitudes (or their dual Wilson loops [29–33])
can be computed through an integrable flux-tube picture.
The dream of computing amplitudes analytically at any
value of the coupling constant g2, or at least at any order
in perturbation theory, has not yet been achieved.

Here we present for the first time a way to compute
scattering amplitudes in planar N = 4 SYM to any or-
der in the coupling, for any helicity configuration and
any number of external legs, albeit in the simplified kine-
matic setup of multi-Regge kinematics (MRK) where
the produced particles are strongly ordered in rapidity
and have comparable transverse momenta. While in Eu-
clidean kinematics the ratios RN become trivial in the
limit [34–39], they develop a non-trivial kinematic de-

• Exploits all orders understanding of kinematic limits and
functional/analytic properties of these objects.

[Coronado] [Dixon et al.]

[Del Duca, Duhr et al.] [Basso, Sever, Vieira]

Regge: Collinear:

See

Greg Ridgway’s

Talk

See e.g. “What can we learn about QCD and Collider Physics from N = 4” by Henn
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Motivation: Bootstrap

• For this audience, the objects of interest are cross section level (event
shape) observables.
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Figure 5: Comparison of a Pythia simulation for Higgs EEC to the analytic LO and NLO

results from eq. (3.1). Both Pythia curves contain contributions from self-correlations,

which are not included in the analytic result. The area under both Pythia curves is

unity. Omitting the self-correlations decreases the area under the Pythia curve with

haronization to 0.96, while the area under the curve without hadronization becomes 0.88.

Adding self-correlations only increases the number of entries in the very last bin in the

collinear (cos � ⇡ 1) region, while the rest of the curve remains unchanged.

we generate 50 additional samples with the same settings and the same number of events

but di�erent random seeds. Then, for each bin i we can calculate the standard deviation

�i via

�i =

���� 1

n

nX

j=1

(xj(i) � µi)2, (5.2)

where xj(i) is the content of the ith bin in the jth sample, n = 50 and the mean for the ith

bin, µi is given by

µi =
1

n

nX

j=1

xj(i). (5.3)

Comparing the size of the errors in our simulations we observe the unphysical e�ect that

the curve with hadronization seems to have smaller errors than the one without. This

suggests that the systematic errors (especially for hadronization) might be much larger

than the statistical uncertainties. Looking only at the central values, it is interesting to

observe that in the cos � region between �0.5 and 0.5, both curves seem to lie very close

– 21 –

• SCET o↵ers a formalism for systematically expanding event shapes
about their kinematic limits. Useful phenomenologically.

• Can one do better and fully bootstrap (or globally approximate) event
shape observables?

• What observables are amenable to this, and what information is
needed from SCET?

From [Luo, Shtabovenko, Yang, Zhu]
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• Motivation: Global Structure and
Asymptotics of the EEC

• Four Loop Rapidity Anomalous Dimension

• Expansion of the EEC in the Sudakov Region
from the Subleading Rapidity RG
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Global Structure and Asymptotics of the EEC
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Energy-Energy Correlators

• To understand the structure of event shape observables, one should
start with those that are most closely tied to simple field theoretic
objects (no algorithms).

• Arguably the simplest is the two-point correlator, which is called the
Energy-Energy Correlator.
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Energy-Energy Correlators

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�
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=

X

i,j
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EiEj

Q2
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✓
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1 � cos �ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†
i

hOO†i
, (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di�erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1

2
C(↵s) z�N=4

J (�s) , (1.4)
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phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

�(z) =
1

2
C(↵s) z�N=4

J (�s) , (1.4)

– 2 –

• The EEC admits an alternative formulation as a four point function of
light ray operators

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n)

1
�tot

d�
dz

=

R
d4x eiq·x

hO(x)E(~n1)E(~n2)O
†(0)iR

d4x eiq·xhO(x)O†(0)i

• Simplest extension of a standard four point correlator of local
operators =) has led to significant recent progress.

• Useful for understanding properties of event shapes.

[Korchemsky; Maldacena, Hofman]

[Chicherin, Henn, Sokatchev, Yan,Simmons Du�n, Kologlu, Kravchuk, Zhiboedov,Korchemsky, Moult, Dixon, Zhu,...]
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Limits of The Energy-Energy Correlator
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• Both jet and hard function are vector in flavor space


• Hq (Hg) : probability of finding a quark (gluon) with 
momentum fraction x


• Jq (Jg) : probability of finding two parton with 
momentum fraction y1, y2 and relative transverse 
momentum qT in quark (gluon) initiated jet, 
weighted by y1*y2

Full interference 
effects retained in H 

and J, separately
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Figure 5: Comparison of a Pythia simulation for Higgs EEC to the analytic LO and NLO

results from eq. (3.1). Both Pythia curves contain contributions from self-correlations,

which are not included in the analytic result. The area under both Pythia curves is

unity. Omitting the self-correlations decreases the area under the Pythia curve with

haronization to 0.96, while the area under the curve without hadronization becomes 0.88.

Adding self-correlations only increases the number of entries in the very last bin in the

collinear (cos � ⇡ 1) region, while the rest of the curve remains unchanged.

we generate 50 additional samples with the same settings and the same number of events

but di�erent random seeds. Then, for each bin i we can calculate the standard deviation

�i via

�i =

���� 1

n

nX

j=1

(xj(i) � µi)2, (5.2)

where xj(i) is the content of the ith bin in the jth sample, n = 50 and the mean for the ith

bin, µi is given by

µi =
1

n

nX

j=1

xj(i). (5.3)

Comparing the size of the errors in our simulations we observe the unphysical e�ect that

the curve with hadronization seems to have smaller errors than the one without. This

suggests that the systematic errors (especially for hadronization) might be much larger

than the statistical uncertainties. Looking only at the central values, it is interesting to

observe that in the cos � region between �0.5 and 0.5, both curves seem to lie very close

– 21 –

• The EEC has two kinematic limits in its distribution:

[Dixon, Moult, Zhu; Korchemsky; Simmons Du�n, Kologlu, Kravchuk, Zhiboedov]

[Moult, Zhu]

CollinearSudakov
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Leading Power Asymptotics

• The leading power asymptotics in both limits are known to 4 loops.

O

|~b?|

ib0
⌫

t

z

1

Fixed by kinematics and 
dimension analysis

All-order factorization for z→0
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0
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0
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• Both jet and hard function are vector in flavor space


• Hq (Hg) : probability of finding a quark (gluon) with 
momentum fraction x


• Jq (Jg) : probability of finding two parton with 
momentum fraction y1, y2 and relative transverse 
momentum qT in quark (gluon) initiated jet, 
weighted by y1*y2

Full interference 
effects retained in H 

and J, separately
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Figure 5: Comparison of a Pythia simulation for Higgs EEC to the analytic LO and NLO

results from eq. (3.1). Both Pythia curves contain contributions from self-correlations,

which are not included in the analytic result. The area under both Pythia curves is

unity. Omitting the self-correlations decreases the area under the Pythia curve with

haronization to 0.96, while the area under the curve without hadronization becomes 0.88.

Adding self-correlations only increases the number of entries in the very last bin in the

collinear (cos � ⇡ 1) region, while the rest of the curve remains unchanged.

we generate 50 additional samples with the same settings and the same number of events

but di�erent random seeds. Then, for each bin i we can calculate the standard deviation

�i via

�i =

���� 1

n

nX

j=1

(xj(i) � µi)2, (5.2)

where xj(i) is the content of the ith bin in the jth sample, n = 50 and the mean for the ith

bin, µi is given by

µi =
1

n

nX

j=1

xj(i). (5.3)

Comparing the size of the errors in our simulations we observe the unphysical e�ect that

the curve with hadronization seems to have smaller errors than the one without. This

suggests that the systematic errors (especially for hadronization) might be much larger

than the statistical uncertainties. Looking only at the central values, it is interesting to

observe that in the cos � region between �0.5 and 0.5, both curves seem to lie very close

– 21 –

�R(✏⇤) = �S

�cusp

�T (3)

[Moch, Vermaserren, Vogt, ...][Vladimirov]

[Henn, Korchemsky, Mistlberger]
[Schabinger, Panzer, von Manteu↵el]

In Progress: [Moult, Zhu, Zhu] In Progress: [Dixon, Moult, Zhu]

Wilson Lines Twist 2 Spin-j

For jet functions/ constants

see talk by Tongzhi Yang
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Four Loop Rapidity Anomalous Dimension
[IM, YuJiao Zhu, Hua Xing Zhu]
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Into the Bulk of the Distribution

• Leading power singular behavior known for the EEC is known at 4
loops at both ends! How can we make our way into the bulk of the
distribution? No numerical fixed order codes.

• Attempt to perform power expansions about the two ends:

1− 0.5− 0 0.5 1
χcos 

1−10

1

10
χ

d
 c

o
s 

)
χ

 (
H

Σ
d
 

 
to

t
Γ
1

Pythia 8.2 with hadronization (5000 events)

Pythia 8.2 w/o hadronization (5000 events)

Analytic LO

Analytic NLO

Figure 5: Comparison of a Pythia simulation for Higgs EEC to the analytic LO and NLO

results from eq. (3.1). Both Pythia curves contain contributions from self-correlations,

which are not included in the analytic result. The area under both Pythia curves is

unity. Omitting the self-correlations decreases the area under the Pythia curve with

haronization to 0.96, while the area under the curve without hadronization becomes 0.88.

Adding self-correlations only increases the number of entries in the very last bin in the

collinear (cos � ⇡ 1) region, while the rest of the curve remains unchanged.

we generate 50 additional samples with the same settings and the same number of events

but di�erent random seeds. Then, for each bin i we can calculate the standard deviation

�i via

�i =

���� 1

n

nX

j=1

(xj(i) � µi)2, (5.2)

where xj(i) is the content of the ith bin in the jth sample, n = 50 and the mean for the ith

bin, µi is given by

µi =
1

n

nX

j=1

xj(i). (5.3)

Comparing the size of the errors in our simulations we observe the unphysical e�ect that

the curve with hadronization seems to have smaller errors than the one without. This

suggests that the systematic errors (especially for hadronization) might be much larger

than the statistical uncertainties. Looking only at the central values, it is interesting to

observe that in the cos � region between �0.5 and 0.5, both curves seem to lie very close

– 21 –

d�
dz

=
1

1 � z

X
c(0)

n logn(1 � z)

+
X

c(2)
n logn(1 � z)

+ (1 � z)
X

c(4)
n logn(1 � z)

+ · · ·

d�
dz

=
1
z

X
d(0)

n logn(z)

+
X

d(2)
n logn(z)

+ (z)
X

d(4)
n logn(z)

+ · · ·
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Into the Bulk of the Distribution
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Figure 5: Comparison of a Pythia simulation for Higgs EEC to the analytic LO and NLO

results from eq. (3.1). Both Pythia curves contain contributions from self-correlations,

which are not included in the analytic result. The area under both Pythia curves is

unity. Omitting the self-correlations decreases the area under the Pythia curve with

haronization to 0.96, while the area under the curve without hadronization becomes 0.88.

Adding self-correlations only increases the number of entries in the very last bin in the

collinear (cos � ⇡ 1) region, while the rest of the curve remains unchanged.

we generate 50 additional samples with the same settings and the same number of events

but di�erent random seeds. Then, for each bin i we can calculate the standard deviation

�i via

�i =

���� 1

n

nX

j=1

(xj(i) � µi)2, (5.2)

where xj(i) is the content of the ith bin in the jth sample, n = 50 and the mean for the ith

bin, µi is given by

µi =
1

n

nX

j=1

xj(i). (5.3)

Comparing the size of the errors in our simulations we observe the unphysical e�ect that

the curve with hadronization seems to have smaller errors than the one without. This

suggests that the systematic errors (especially for hadronization) might be much larger

than the statistical uncertainties. Looking only at the central values, it is interesting to

observe that in the cos � region between �0.5 and 0.5, both curves seem to lie very close

– 21 –

• From the representation in terms of the discontinuity of the four point
correlator, one can show

• Behavior also observed in QCD calculation of Zhu, Dixon et al.

d�

dz
=

1

z2(1 � z)
f(z) , f(z)|z!1 ! c log(z)

• Naive power expansions are
inconsistent with this behavior:

d�
dz

=
1

z2(1 � z)
(log(1 � z) + (1 � z) log(1 � z) + · · · ) (1)

• Places very strong constraints!
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Into the Bulk of the Distribution

• Must expand in terms of functions that obey all z ! 0, 1, 1
constraints.(involves further structural knowledge of functions not
discussed here) =) “globally approximate” or fully bootstrap.

• Integral at a given order can then be used to fix endpoint
contributions via Ward Identities.

• Very promising that event shape observables that have analytic
structure can be “globally approximated” or fully bootstrapped.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20

1.25

1.30

SCET 2020 June 2, 2020 14 / 31

USingNLP_
c logto log'll2
c logz log G z

a c logto log a

sdzzdjz f.dzCi ddz Ez



Subleading Power Asymptotics
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• Both jet and hard function are vector in flavor space


• Hq (Hg) : probability of finding a quark (gluon) with 
momentum fraction x


• Jq (Jg) : probability of finding two parton with 
momentum fraction y1, y2 and relative transverse 
momentum qT in quark (gluon) initiated jet, 
weighted by y1*y2

Full interference 
effects retained in H 

and J, separately
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Figure 5: Comparison of a Pythia simulation for Higgs EEC to the analytic LO and NLO

results from eq. (3.1). Both Pythia curves contain contributions from self-correlations,

which are not included in the analytic result. The area under both Pythia curves is

unity. Omitting the self-correlations decreases the area under the Pythia curve with

haronization to 0.96, while the area under the curve without hadronization becomes 0.88.

Adding self-correlations only increases the number of entries in the very last bin in the

collinear (cos � ⇡ 1) region, while the rest of the curve remains unchanged.

we generate 50 additional samples with the same settings and the same number of events

but di�erent random seeds. Then, for each bin i we can calculate the standard deviation

�i via

�i =

���� 1

n

nX

j=1

(xj(i) � µi)2, (5.2)

where xj(i) is the content of the ith bin in the jth sample, n = 50 and the mean for the ith

bin, µi is given by

µi =
1

n

nX

j=1

xj(i). (5.3)

Comparing the size of the errors in our simulations we observe the unphysical e�ect that

the curve with hadronization seems to have smaller errors than the one without. This

suggests that the systematic errors (especially for hadronization) might be much larger

than the statistical uncertainties. Looking only at the central values, it is interesting to

observe that in the cos � region between �0.5 and 0.5, both curves seem to lie very close

– 21 –

• Motivates detailed understanding of subleading asymptotics.

• No understanding of subleading z ! 1 asymptotics in either CFT or
EFT language.

Light Ray OPE?
[Braun, Balitsky]

[Simmons Du�n et al.]
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The Subleading Power Rapidity RG

EEC(2) = �
p

2as D

"r
�cusp

2
log(1 � z)

#

[IM, Vita, Yan]
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Perturbative Data

• EEC is known to 3 loops in N = 4 for generic angles.

• Can extract the NLP series in Sudakov region:

EEC
(2) = �2as log(1 � z)

+ a2
s


8

3
log3(1 � z) + 3 log2(1 � z) + (4 + 16⇣2) log(1 � z) + (�12 � 2⇣2 + 36⇣2 log(2) + 5⇣3)
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+ a3
s
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log5(2) + 1536Li5
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� 544⇣4 + 192⇣2 log2(2) + 16 log4(2) + 384Li4

✓
1

2

◆

� 288⇣2 log(2) + 158⇣3 + 55⇣2 +
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2

• Excellent playground for understanding subleading power rapidity
factorization.

[Chicherin, Henn, Sokatchev, Yan]
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Perturbative Data: Leading Logarithms

• Here we will focus on understanding the leading logarithmic series:

EEC
(2) = �2as log(1 � z) +

8

3
a2

s log3(1 � z) �
32

15
a3

s log5(1 � z) +
128

105
a4

s log7(1 � z)

�
512

945
a5

s log9(1 � z) +
2048

10395
a6

s log11(1 � z) �
8192

135135
a7

s log13(1 � z) + · · ·

• Will show that this can be written as

EEC(2) = �
p

2as D

"r
�cusp

2
log(1 � z)

#

• We will call this “Dawson’s Sudakov” after Dawson’s function

D(x) =
1

2

p
⇡e�x2

erfi(x)

• Already an interesting structure in the LLs at NLP!
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General Approach

• In the case of SCETI we found at subleading power a non-trivial
mixing structure with “identity operators”.

• Would like to understand their analogues for the rapidity RG.
• To explore the structure of consistent rapidity RGs at NLP we will
take the following approach:

• Assume a naive factorization (without endpoint divergences) at
subleading power.

• Understand mixing structure into “identity operators”
• Use known behavior of leading power functions combined with RG

consistency in µ d
dµ , ⌫ d

d⌫ , and
h

d
dµ , d

d⌫

i
= 0 to derive anomalous

dimensions of “identity operators”.

S(2)
g,✓ (k, µ) =

1

(N2
c � 1)

trh0|Y
T
n̄ (0)Yn(0)✓(k � T̂ )YT

n (0)Yn̄(0)|0i
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Caveats

• In general one must worry about the presence of endpoint divergences
(see talks by Zelong Liu and Bianka Mecaj).

• These definitely appear for event shapes when both quarks and gluons
are present:

! �4CF

✓
↵s

4⇡

◆
log(⌧)e

�4CF

⇣
↵s
4⇡

⌘
log2(⌧)

2

66664

 
1 � e

�4(CA�CF )
⇣

↵s
4⇡

⌘
log2(⌧)

!

4(CA � CF )
⇣

↵s
4⇡

⌘
log2(⌧)

3

77775

• SUSY saves you since you have a supersymmetric relation between
soft quarks and soft gluons.

• Intuitively, one does not expect such problems to appear in N = 4 at
LL. Supported by the fact that our RG will predict the O(↵3

s)
coe�cient of the N = 4 result.
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An Illustrative Example

• To initiate understanding of subleading rapidity RG, consider leading
power soft (or jet) function:

S(~pT ) =
1

N2
c � 1

⌦
0
��Tr

�
T
⇥
S

†
n̄Sn

⇤
�(2)(~pT � P?)T

⇥
S

†
nSn̄

⇤ ��0
↵

⌫
d
d⌫

S(~pT ) =

Z
d~qT �S

⌫ (pT � qT )S(~qT ) ,

µ
d
dµ

S(~pT ) = �S
µ S(~pT )

�S
⌫ = 2�cusp(↵s)L0 (~pT , µ)

�S
µ = 4�cusp(↵s) log

⇣µ
⌫

⌘

S(2)
p2

T
(~pT ) = ~p2

T S(~pT )

• What is the RG of the subleading power soft function:
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An Illustrative Example

• µ RGE is una↵ected, since it is multiplicative:

µ
d
dµ

S(2)

p2
T

(~pT ) = �µ
SS(2)

p2
T

(~pT )

• ⌫ RGE is more non-trivial. Using the identity

~p2
T = (~pT � ~qT )2 + ~q2

T + 2(~pT � ~qT ) · ~qT

we obtain

⌫
d

d⌫
S

(2)

p2
T

(~pT ) =

Z
d~qT (~pT � ~qT )2�S(pT � qT )S(qT )

+

Z
d~qT �S(pT � qT ) [2(~pT � ~qT ) · ~qT S(qT )] +

Z
d~qT �S(pT � qT )

h
~q2

T S(~qT )
i

⌫
d

d⌫
S

(2)

p2
T

(~pT ) = 2�cuspIS

+

Z
d~qT �S(pT � qT )2(~pT � ~qT ) · ~S(1)(qT ) +

Z
d~qT �S(pT � qT )S

(2)

p2
T

(~qT ) .

which simplifies to

where

IS /

Z
d2~qT S(~qT ) , ~S(1)(~pT ) = ~pT S(0)(~pT )
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Rapidity Identity Operators

• Unlike in SCETI case, the identity soft function needs a regulator to
be defined.

• Its LL renormalization group equations can be derived by applying

µ d
dµ , ⌫ d

d⌫ , and
h

d
dµ , d

d⌫

i
= 0 to the NLP factorization formula.

• Interestingly, one finds two possible consistent solutions.

IS /

Z
d2~qT S(~qT )

µ
d

dµ
I⌫S = �S

µ I⌫S

⌫
d

d⌫
I⌫S(µ, ⌫) = ��S

µ I⌫S(µ, ⌫) ,

I⌫S(µ, ⌫) =

Z ⌫2

0
d2~qT S(~qT )

µ
d

dµ
Ip

2
T

S = �S
µ Ip

2
T

S

⌫
d

d⌫
Ip

2
T

S (p2
T , µ, ⌫) = 2�cusp log

 
p2

T

µ2

!
Ip

2
T

S (p2
T , µ, ⌫)

Ip
2
T

S (p2
T , µ, ⌫) =

Z p2
T

0
d2~qT S(~qT )

At LL: At LL:

Ip2
T

S
I⌫
S
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Rapidity Identity Operators

• These operators are distinguished by their ⌫-scaling (boost) properties
at the scale µ2 = p2

T :

⌫
d

d⌫
I⌫S(µ = pT , ⌫) = �2�cusp(↵s) log

 
p2

T

⌫2

!
I⌫S(µ = pT , ⌫) , ⌫

d

d⌫
Ip

2
T

S (µ = pT , ⌫) = 0

• For the particular case of S(2)
p2

T
= ~p2

T S(~pT ), only Ip2
T

S appears:

• More general soft/ jet functions at NLP involve n, n̄ · BS , n, n̄ · @S

further modify boost properties as compared to Wilson lines.

• Would be interesting to understand through explicit two loop
calculations of NLP soft/ jet functions.

⌫
d

d⌫
S(2)

p2
T

(~pT ) = 2�cuspIp2
T

S +

Z
d~qT �S(pT � qT )S(2)

p2
T

(~qT ) .
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RG Solutions

• We can now consider the solution of the RG equations for these
functions. At LL, su�cient to consider the solutions on the hyperbola
µ2 = p2

T .

• Consider first Ip2
T

S :
⌫

d

d⌫

 
S(2)

Ip2
T

S

!
=

✓
0 ��I
0 0

◆ 
S(2)

Ip2
T

S

!

with the boundary conditions

Ip2
T

S (µ = pT , ⌫ = pT ) = 1 , S(2)(µ = pT , ⌫ = pT ) = 0

S(2)(µ = pT , ⌫ = Q) = ��I log(pT /Q)Ip2
T

S (µ = pT , ⌫ = pT )

• Will generate standard Sudakov when combined with leading power
jet/ hard functions.
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RG Solutions

• I⌫
S exhibits a more non-trivial RG:

⌫
d

d⌫

✓
S(2)

I⌫
S

◆
=

✓
0 ��I
0 �µ

S

◆✓
S(2)

I⌫
S

◆
,

with the boundary conditions

I⌫
S(µ = pT , ⌫ = pT ) = 1 , S(2)(µ = pT , ⌫ = pT ) = 0

S(2)(µ = pT , ⌫ = Q) = �

p
⇡��I
p

�̃
erfi
hp

�̃ log(pT /Q)
i

I⌫
S(µ = pT , ⌫ = pT )

• Will generate “Dawson’s Sudakov” when combined with hard
function.
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EEC in N = 4 at LL

• Combine factors for EEC and resum to LL:

EEC(2) = �

p
⇡as

p
2as

erfi
⇥p

2as log(1 � z)
⇤
exp

⇥
�2as log(1 � z)2

⇤

EEC
(2) = �

p
2as D

"r
�cusp

2
log(1 � z)

#

��� ��� ��� ��� ��� ��� ���
����

����

����

����

���	

����

����

����

(�-�)

� �
�

��
�
(�
-
�)


������ 
������
������� 
������

�
��

��
� (�-�)

• Agrees with expansion of the three loop result!

EEC
(2)
���
LL

= �2as log(1 � z) +
8
3
a2

s log3(1 � z) �
32
15

a3
s log5(1 � z)
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A Guess for Yang-Mills

• Analytic results for the EEC are known to two loops in QCD for both
e+e� annihilation and H decay.

• Naively would not expect endpoint divergences in pure Yang Mills at
LL.

• Under this assumption, one obtains for the LL series

EEC
(2)
���
Yang-Mills

= 2as log(1 � z) exp
h
�2as log2 (1 � z)

i
� 4

p
2as D

2

4
s

�cusp

2
log(1 � z)

3

5

• Two loops is not high enough to test the interplay of these two series
or for the presence of endpoint divergences.
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Open Questions

• This provides first (very preliminary) glimpse of the structure of the
rapidity RG at subleading power (and it seems interesting!).

• Many interesting questions:
• Systematic operator analysis.
• Interplay with endpoint divergences.
• Extension to NLL.

• In the CFT literature, an OPE for the four point correlator in this
limit is not known? What can SCET teach us about it?

• In a CFT, the rapidity anomalous dimensions is redundant, does this
persist at NLP?

• Much more understanding needed!
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Summary

EEC
(2) = �

p
2as D

2

4
s

�cusp

2
log(1 � z)

3

5
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Pythia 8.2 with hadronization (5000 events)

Pythia 8.2 w/o hadronization (5000 events)

Analytic LO

Analytic NLO

Figure 5: Comparison of a Pythia simulation for Higgs EEC to the analytic LO and NLO

results from eq. (3.1). Both Pythia curves contain contributions from self-correlations,

which are not included in the analytic result. The area under both Pythia curves is

unity. Omitting the self-correlations decreases the area under the Pythia curve with

haronization to 0.96, while the area under the curve without hadronization becomes 0.88.

Adding self-correlations only increases the number of entries in the very last bin in the

collinear (cos � ⇡ 1) region, while the rest of the curve remains unchanged.

we generate 50 additional samples with the same settings and the same number of events

but di�erent random seeds. Then, for each bin i we can calculate the standard deviation

�i via

�i =

���� 1

n

nX

j=1

(xj(i) � µi)2, (5.2)

where xj(i) is the content of the ith bin in the jth sample, n = 50 and the mean for the ith

bin, µi is given by

µi =
1

n

nX

j=1

xj(i). (5.3)

Comparing the size of the errors in our simulations we observe the unphysical e�ect that

the curve with hadronization seems to have smaller errors than the one without. This

suggests that the systematic errors (especially for hadronization) might be much larger

than the statistical uncertainties. Looking only at the central values, it is interesting to

observe that in the cos � region between �0.5 and 0.5, both curves seem to lie very close

– 21 –

O

|~b?|

ib0
⌫

t

z

1

• Four Loop Leading Power Asymptotics
of the EEC are known in QCD. (N4LL
resummation on both ends)

• Dawson’s Sudakov describes LL soft
gluon radiation in rapidity factorization
at NLP

• Systematic power expansion about
asymptotic limits combined with
knowledge of global structure o↵ers a
powerful means to approximate or fully
bootstrap event shape observables.
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Thanks!
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