Ion transport

Simulating ion motion

Lines found in most Garfield++ avalanche programs:

// Load the ion mobilities.
gas->LoadIonMobility("/afs/cern.ch/user/r/rjd/GemGain/Charge/mob_Ar_Ar+");

▶ What do they do ?

Why are they often inappropriate ?

The importance of ions

- Avalanches produce not only electrons, but also ions at least as many.
- Detectors like Micromegas and wire chambers get their signal mostly from ion motion.
- ► Hence we better know the basics of ions:
 - *which ions* are produced in the avalache ?
 - *which ions* generate the signal ?
 - *how fast* do the ions move ?
 - > are they subject to *diffusion* ?

Mobility

The velocity with which ions move is usually expressed in the form of a mobility:

 $\triangleright v_{\rm D}$: drift velocity

- > K: mobility $v_{\rm D} = K E$
- *E*: electric field
- Reason: for moderate fields, the mobility is approximately constant.

Electron-impact cross sections

 \triangleright CO₂⁺ and Ar⁺ compete.

Ne⁺ has higher threshold and is produced less.

[Pure gases, data from LXcat]

Avalanche products

Ar⁺ dominates in Ar-CO₂,

 CO_2^+ and Ne⁺ in Ne-CO₂

Avalanche products in Ar-CO₂

► This tells us that avalanches primarily produce Ar⁺ ions.

- Does this mean that the signals are generated by Ar⁺ ions ? Maybe.
- ▶ If so, we need the mobility of Ar^+ in Ar-CO₂ mixtures.
- This can in principle be calculated with Blanc's law.

Avalanche products in Ne-CO₂

- ► This tells us that avalanches produce mostly CO₂⁺ ions and a few Ne⁺ ions.
- ► Does this mean that the signals are generated by CO_2^+ and Ne⁺ ions ? Maybe.
- If so, we need the mobility of CO₂⁺ and Ne⁺ in Ne-CO₂ mixtures.
- This can in principle be calculated with Blanc's law.

Blanc's mobility interpolation

[A. Blanc, *Recherches sur les mobilités des ions dans les gaz*, J. Phys. Theor. Appl. **7** (1908) 825-839, 10.1051/jphystap:019080070082501]

Known & unknown mobilities

Known mobilities:
Ar⁺ in Ar, Ne⁺ in Ne,
Ar₂⁺ in Ar, Ne₂⁺ in Ne,
CO₂⁺ in Ar, CO₂⁺ in Ne.

Not published: Ar⁺ in CO₂, Ne⁺ in CO₂. why?

Published, but controversial:
 CO₂⁺ in CO₂.

can you guess why ?

Ar⁺ and Ne⁺ mobility $\equiv v_{\rm D}(E) / E$

Noble gas ion mobilities are well known:

Ion induced signals

Current induced on the pads of a TPC by ions moving from the anode wires to the pads and the field wires:

Signals in Ne-CO₂

- Ne⁺ in Ne comes nearest to the measurements ...
- ▶ we've used it for years ...
- but does it make sense ?

NA49 TPC: Ne 90 % CO_2 10 %. [Data: Rainer Renfordt]

Time taken by an ion from anode wire to field wire $[\mu s]$

Principal reactions involving CO₂

Ar⁺: charge exchange,
$$\tau \approx 0.85$$
 ns
Ar⁺ + CO₂ → Ar + CO₂⁺

Ne⁺: charge transfer in 2-steps, τ ≈ 8 ns
Ne⁺ + CO₂ → Ne + CO⁺ + O
CO⁺ + CO₂ → CO + CO₂⁺

► CO_2 : 3-body association, 7-20 ps ► $CO_2^+ + 2CO_2 \rightarrow CO_2^+ CO_2 + CO_2$

[For 10 % CO₂, atmospheric pressure, room temperature]

Situating cluster ions

Chemically bound molecules:covalent or ionic bond

Cluster ions:

0.75 - 11.1 eV

0.09 - 1.7 eV

bound by charge-induced dipole forces

constituents retain their identity

van der Waals molecules:
 bound by van der Waals forces
 observed at low temperatures

[B.M. Smirnov, "Cluster Ions and Van Der Waals Molecules," CRC press]

0.0009 - 0.1 eV

Binding energy of CO₂ cluster ions

Binding energy:
 CO₂⁺•CO₂: 0.60 eV (16.2 kcal/mol)
 CO₂⁺•2CO₂: 0.26 eV (6.0 kcal/mol)
 [M. Meot-Ner and F.H. Field, J. Chem. Phys., 66 (1977) 4527]

(Conversion: 1 kcal/mole = 0.043 eV)

Life cycle of $CO_2^{+\bullet}(CO_2)_n$

- CO₂⁺•CO₂ has a dissociation energy of 0.6 eV far above thermal energies at 1 bar. It is a so-called long-lived cluster:
 calculated lifetime = 5 ns
 [B.M. Smirnov, "Cluster Ions and Van Der Waals Molecules," CRC press]
- ► much longer than the formation time $\tau = 7-20$ ps via 3-body association in 10 % CO₂ with Ar + CO₂ as "helpers".
- \blacktriangleright Any isolated CO₂⁺ rapidly binds again.
- ► $CO_2^{+\bullet}(CO_2)_n$ probably lives shorter but will recombine. The cluster size *n* will therefore fluctuate at the ns time scale.

Reactions of Ar⁺ and Ne⁺

▶ Resonant charge exchange: (why does this matter ?)
▶ Ar⁺ + Ar ↔ Ar + Ar⁺
▶ k = 4.6 10⁻¹⁰ cm³/s, τ ≈ 100 ps (for N_{Ar} = 2.45 10¹⁹/cm³)

Ar₂⁺ dimer formation: Ar⁺(²P^o_{3/2}) + 2 Ar \rightarrow Ar⁺•Ar + Ar $k = 2.3 \pm 0.1 \ 10^{-31} \text{ cm}^{6}/\text{s}, \ \tau \approx 7 \text{ ns}$

Ne₂⁺ dimer formation: Ne₂⁺ $k = 0.6 \ 10^{-31} \ \text{cm}^{6}/\text{s}$

Ions drifting in pure Ar

Thermal collision frequency

► Mean relative velocity (μ = reduced mass):

$$\overline{v}_{\rm rel} = \sqrt{\frac{8k_{\rm B}T}{\pi\mu}} \approx 570 \, {\rm m/s}$$

 \blacktriangleright Multiplying with the cross section σ gives the rate constant:

$$k = \sigma \overline{v}_{rel} \approx 9 \ 10^{-10} \ cm^3/s$$

• Combine with the number density to get collision time:

$$\tau = \frac{1}{N \sigma \overline{v}_{rel}} = \frac{k_B T}{p} \frac{1}{\sigma \overline{v}_{rel}} = \frac{1}{p \sigma} \sqrt{\frac{\pi \mu k_B T}{8}} \approx 45 \text{ ps}$$

Reaction time and Rate constant: 2-body

► Consider a charge transfer reaction $A^+ B \rightarrow A B^+$:

> rate \propto density of B molecules $N_{\rm B}$ [1/cm³];

▶ The proportionality factor *k* is called rate constant:

> rate = $k \text{ [cm³/s]} N_{\text{B}} [1/\text{cm}^3]$.

The reaction time τ is the reciprocal of the rate.

3-body reactions

Reactions resulting in a bound state, require the evacuation of excess energy & momentum

- via internal degrees of freedom (rotation, vibration ...), or
- via a 3-body reaction, with helpers.

▶ The rate constant in 3-body reactions has the unit of cm⁶/s.

► Example 2: $CO_2^+ + CO_2^- + CO_2^- \rightarrow CO_2^+ + CO_2^- + CO_2^-$ ► $k = 2.4 \ 10^{-28} \ cm^{6}/s$ ► rate = $k \ N^2 = 1.4 \ 10^{11}/s, \ \tau = 7 \ ps$

mathematica

- Start from the number of Ar⁺ and CO₂⁺ produced in the avalanche.
- Calculate evolution of Ar⁺, CO₂⁺, CO₂⁺•CO₂ clusters and Ar₂⁺ dimers.

```
Clear[nAr, nAr2, nC02, ncl]
evol = DSolve[
    {nAr ' [x] == - (rArAr2 + rArC02) nAr[x],
        nAr[0] == n0Ar,
```

```
nAr2'[x] == rArAr2 nAr[x],
nAr2[0] == 0,
```

```
nC02 ' [x] == rArC02 nAr[x] - rC02cl nC02[x],
nC02[0] == n0C02,
```

```
ncl'[x] == rC02clnC02[x],
ncl[0] == 0},
```

```
{nAr[x], nAr2[x], ncl[x], nC02[x]},
x];
CForm[%]
```

Evolution in $Ar-CO_2(93-7)$

Blanc diagram for Ne-CO₂

 \blacktriangleright Like in Ar-CO₂, CO₂⁺ forms clusters in Ne-CO₂.

Blanc diagram for Ar-CO₂

Coxon: pure CO_2

Schultz: 1 atm

- Coimbra: 0.01 atm, smaller clusters ?
- ▶ NA49: 1 atm
- ALICE: 1 atm, water clusters ?

How about alkanes ?

Ar 90 % - C₂H₆ 10 %, at low pressure.
Expect Ar⁺ or C₂H₆ but ... none are seen – why ?

[André Cortez et al. 10.1088/1748-0221/8/12/P12012]

Avalanche ions in $Ar-CO_2-CH_4$ (90-7-3)

	Ion	Energy [eV]	Rate [GHz]	Fraction
Ar	Ar ⁺	15.75961	53.73	88.3 %
CO_{2}	CO_{2}^{+}	13.776	3.119	5.1 %
2	CO_{2}^{+*}	17.314	0.3758	
	CO_{2}^{+*}	18.077	0.2218	
	O ⁺ ⁻	19.07	0.1324	
	CO ⁺	19.47	0.1525	
CH_4	CH_{4}^{+}	12.65	1.959	3.2 %
·	CH ₃ ⁺	14.25	1.115	1.8 %
	CH ₂ ⁺	15.2	0.07018	

Magboltz 11.2bis, E = 100 kV/cm1 atm, 20 C

Reactions in Ar-CO₂-CH₄

$Ar^+ + Ar + M \rightarrow Ar_2^+ + M$	100 %	$k = 2.3 \ 10^{-31}$	± 10 %
$\rightarrow Ar^+ + CO_2 \rightarrow CO_2^+ + Ar$	100 %	$k = 5 \ 10^{-10}$	± 10 %
\rightarrow Ar ⁺ + CH ₄ \rightarrow CH ₃ ⁺ + Ar + H	85 %	$k = 1.1 \ 10^{-9}$	± 10 %
$\rightarrow CH_2^+ + Ar + H_2$	15 %		
\triangleright CO ₂ ⁺ + CO ₂ + M $\rightarrow CO_2 \circ CO_2^+ + M$	100 %	$k = 2.4 \ 10^{-28}$	
$\rightarrow CO_2^+ + CH_4^- \rightarrow CH_4^+ + CO_2^-$	25 %	$k = 1.1 \ 10^{-9}$	± 10 %
\rightarrow HCO ₂ ⁺ + CH ₃	75 %		
$\rightarrow CH_3^+ + CH_4 \rightarrow C_2H_5^+ + H_2$	100 %	$k = 1.1 \ 10^{-9}$	± 10 %
$C_2H_5^+ + CH_4^- \rightarrow C_3H_7^+ + H_2^-$	100 %	$k = 1 10^{-14}$	± 10 %
$ \tilde{CH}_4^+ + CH_4^- \rightarrow \tilde{CH}_5^+ + \tilde{CH}_3^- $	100 %	$k = 1.15 \ 10^{-9}$	± 10 %
\rightarrow CH ₅ ⁺ + CH ₄ \rightarrow products	100 %	$k = 3 10^{-11}$	$\pm 30 \%$
\rightarrow CH ₄ ⁺ + CO ₂ \rightarrow HCO ₂ ⁺ + CH ₃	99 %	$k = 9.6 \ 10^{-10}$	± 10 %
$\rightarrow CH_3CO^+ + OH$	1 %		
\rightarrow CH ₅ ⁺ + CO ₂ \rightarrow HCO ₂ ⁺ + CH ₄	100 %	$k = 4 10^{-11}$	± 10 %
$ HCO_2^+ + CH_4^- \rightarrow CH_5^+ + CO_2^- $	$100 \ \%$	$k = 6 \ 10^{-10}$	± 15 %

[B.M. Smirnov, Cluster Ions and Van Der Waals Molecules] [V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. **62** (1986) 553-672.]

Reaction chains

Evolution in $Ar-CO_2-CH_4$ (90-7-3)

Initial ions: Ion fraction $Ar^{+} \rightarrow$ $C_2H_5^+$ $> CO_2^+,$ ▶ CH₃, CO $CO_{2}.CO_{2}^{+}$ $> Ar_2^+$ 10^{-1} \triangleright CO₂⁺ \rightarrow Ar, ► CH₄⁺ \triangleright CO₂⁺.CO₂ HCO⁺ > HCO₂⁺ \triangleright CH₄⁺ \rightarrow 10^{-2} $> CH_{5}^{+},$ > HCO₂⁺ CH[‡]₃ ► CH₃CO⁺ $\triangleright CH_3^+ \rightarrow C_2H_5^+$ 10^{-3} 10^{-10} 10^{-9} 10⁻⁸ Time [s]

Products after 10 ns

C₂H₅⁺ → C₃H₇⁺ slow reaction, k = 1 10⁻¹⁴
[Hiraoka & Kebarle https://doi.org/10.1063/1.431116]
CH₅⁺ → "products" slow reaction, k = 3 10⁻¹¹
CO₂•CO₂⁺→ grows to n = 3-4, reacts with CH₄ to HCO₂?
[Y. Kalkan et al. 2015 JINST 10 P07004]
Ar⁺ → Ar₂⁺ drifts faster than Ar⁺

$$\blacktriangleright \text{HCO}_2^+ \rightarrow \text{CH}_5^+$$

 HCO_{2}^{+} decays at $k = 6 \ 10^{-10}$

methanium

ethenium

protonated

carbon dioxide

Mass-mobility in CO₂

- Langevin polarisation limit not appropriate for many ions.
- Langevin elastic limit can fit molecular ions.
- Uncertainty for cluster ion mobility.
- Little resonant charge exchange effect.

Summary ions

- Avalanches ionise the constituent gases, and the initial ions undergo a staggering sequence of reactions.
 - ▶ In Ar-CO₂ and Ne-CO₂ mixtures, the signal ions are $CO_2^{+\bullet}(CO_2)_n$ clusters;
 - > water forms larger clusters, further reducing the mobility;
 - pure noble gases form dimers, Ar₂⁺, Ne₂⁺ which are faster than Ar⁺ and Ne⁺ due to resonant charge exchange;
 - Xe forms dimers, trimers and probably bigger objects;
 - > alkanes combine to form heavier molecules;
 - > CH₄ leads to exotic molecules.

▶ There is room for theses in this field.

Overview

Xe-CH \sim CH₅⁺, C₂H₅⁺, C₃H₇⁺, Xe₂⁺ \sim Xe-C₂H₆ $> C_{3}H_{n}^{+}, C_{4}H_{n}^{+}, Xe_{2}^{+}$ \sim Xe-CO₂-C₂H₆ $\sim C_2H_4^+, C_2H_5^+, C_2H_6^+, XeC_2H_6^+,$ $CO_2 \bullet CO_2^+$ Xe-CF₄ $\sim CF_{3}^{+}, Xe_{2}^{+}$ \blacktriangleright Xe-CF₄-CO₂ > Xe⁺, Xe₂⁺, CF₃⁺, CO₂•CO₂⁺ Ar-CH \triangleright CH₅⁺, C₂H₄⁺, C₂H₅⁺, C₃H₄⁺, C₃H₅⁺, $C_{3}H_{6}^{+}, C_{3}H_{7}^{+}, Ar_{2}^{+}$ $Ar-C_2H_6$ $> C_{3}H_{n}^{+}, C_{4}H_{n}^{+}, Ar_{2}^{+}$ Ar-i $C_4 H_{10}$ $\sim C_4 H_{10}^+, C_8 H_n^+, C_{12} H_m^+$ $\operatorname{Ar-CF}_4$ CF_{3}^{+}

Not used

Ionisation potentials

Cluster mobility in Ar-CO₂ & Ne-CO₂

One needs as ingredients:
the Blanc interpolation formula;
the mobility of the ions in the pure gases.
There are measurements of:
Ar⁺ in Ar, Ne⁺ in Ne,
CO₂⁺ in Ar and in Ne;
CO₂⁺, CO₂⁺•CO₂ and CO₂⁺•(CO₂)_n in CO₂.

But we have not found measurements of:
 mobility of CO₂⁺•(CO₂)_n neither in Ar nor in Ne;
 we can get an idea from the mass-mobility relation.

Experimental check

► Remains showing that experiments indeed observe $CO_2^{+\bullet}(CO_2)_n$ and not $CO_2^{+\bullet}$.

This we do by comparing:
 measured mobility as function of mix, with
 mobility of CO₂⁺, Ar⁺ and Ne⁺ from literature.

Avalanche products & by-products

At very low pressure, there are traces of O⁺, C⁺ and CO^{+:}
 O⁺ + CO₂ → O₂⁺ + CO
 O⁺₂ + CO₂ + M → O₂⁺ • CO₂ + M
 C⁺₂ + CO₂ + M → O₂⁺ • CO₂ + M
 C⁺ + CO₂ → CO⁺ + CO
 CO⁺ + CO₂ → CO + CO₂⁺
 K ≈ 1.0 10⁻⁹ cm³/s
 CO⁺ + CO₂ → CO + CO₂⁺

These traces probably also exist at higher pressure, but they disappear rapidly, except the cluster and O₂⁺.

[H.W. Ellis et al., J. Chem. Phys. 64 (1976) 3935-3941, 10.1063/1.432024]

He, Xe, N₂

 $T1^{+}$

 Xe_2^+

Xe

2

[J. A. Hornbeck, J. Phys. Chem. 56 (1952) 829-831 10.1021/j150499a003, copied from J.H. Mitchell and K.E.W. Ridler, Proc. Roy. Soc (London) A 146 (1934) 911.]

Ne⁺ in Ne ... did it make sense ?

► The avalanche produced little Ne⁺ to begin with;

 $IP_{Ne^+} > IP_{CO_2^+}$: Ne⁺ took 8 ns to generate a CO₂⁺;

 \blacktriangleright in nearly pure Ne, there could be some Ne₂⁺.

▶ Instead, we obtained $CO_2^+ \bullet CO_2$.

CO₂ at 1 atm: cluster (dis)appearence

Life cycle of $CO_2^{+\bullet}(CO_2)_n$

- CO₂⁺•CO₂ has a dissociation energy of 0.6 eV far above thermal energies at 1 bar. It is a so-called long-lived cluster:
 calculated lifetime = 5 ns
 [B.M. Smirnov, "Cluster Ions and Van Der Waals Molecules," CRC press]
- ► much longer than the formation time $\tau = 7-20$ ps via 3-body association in 10 % CO₂ with Ar + CO₂ as "helpers".
- \blacktriangleright Any isolated CO₂⁺ rapidly binds again.
- ► $CO_2^{+\bullet}(CO_2)_n$ probably lives shorter but will recombine. The cluster size *n* will therefore fluctuate at the ns time scale.

Mobility of CO_2^+ and $CO_2^{+\bullet}(CO_2)_n$ in CO_2^-

- At atmospheric pressure, one almost inevitably measures $CO_2^{+}CO_2$ or $CO_2^{+}(CO_2)_n$.
- Cluster mobility 10-15 % smaller than ion mobility.
- Two measurements exist of clusters with large *n*.

Mass-mobility in pure Ar and Ne

Atlas TRT signals

[Data from Романюк Анатолий Самсонович]

 $\sim C_2H_6$ makes the tail steeper and the mobility larger:

Current, arb. units

Ionisation potentials

 $\sim C_2 H_6$: 11.52 eV

> $Xe^{+}(^{2}P_{_{3/2}})$: 12.129843 eV > $Xe^{+}(^{2}P_{_{1/2}})$: 13.44 eV

 \triangleright CO₂: 13.776 eV

 $CF_4: 15.70 eV \text{ for } CF_3^+ \text{ (main ionisation channel)}$ 16.2 ± 0.1 eV for CF_4^+

Reactions in Xe-CO₂-CF₄

Xe⁺ + Xe + M \rightarrow Xe₂⁺ + M [A.P. Vitols and H.J. Oskam, Phys. Rev. A 8 (1973) 1860-1863.]

► $CO_2^+ + CO_2 + M \rightarrow CO_2^-CO_2^+ + M$ [B.M. Smirnov, Cluster Ions and Van Der Waals Molecules] $k = 2.4 \ 10^{-28}$

► $CO_2^+ + Xe^- \rightarrow CO_2^- + Xe^+$ [V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. **62** (1986) 553-672.]

Note: CF_4^+ is not produced, (only CF_3^+)

Evolution of $Xe-CO_2-CF_4$ (70-10-20)

- Initial ion mix for 100 kV/cm;
- > Xe⁺ and Xe₂⁺ dominate from 10 ns on, Xe_n⁺ for n > 2 are not shown: rates are not known.
- \triangleright CF₃⁺ is an avalanche product; with its low IP, it does not react;
- \triangleright CF₄⁺ is not produced, CF₄ has a high IP, is not attacked by ions.
- CO₂⁺ transfers to Xe⁺ and rapidly forms clusters.

Reactions in $Xe-C_2H_6$

$\sim C_2H_4^+ + C_2H_6^- \rightarrow C_3H_6^+ + CH_4^-$	7%	$k = 5.3 \ 10^{-12} \ \pm 10 \ \%$
$\rightarrow C_3 H_7^+ + C H_3$	93 %	
$C_{2}H_{5}^{+} + C_{2}H_{6}^{-} \rightarrow C_{3}H_{7}^{+} + CH_{4}^{-}$	14 %	$k = 3.8 \ 10^{-11} \pm 10 \ \%$
$\rightarrow C_4 H_9^+ + H_2$	86 %	
$C_{2}H_{6}^{+} + C_{2}H_{6}^{-} \rightarrow C_{3}H_{8}^{+} + CH_{4}^{-}$	42 %	$k = 0.19 \ 10^{-10} \pm 10 \ \%$
$\rightarrow C_3 H_9^+ + C H_3$	58 %	

[V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. 62 (1986) 553-672, A.F.V. Cortez et al. 2013 JINST 8 P07013, J.M.C. Perdigoto et al. 2017 JINST 12 P09003] $k = 2.0 \pm 0.2 \ 10^{-31}$ $\sum Xe^+ + Xe + M \rightarrow Xe_2^+ + M$

[A.P. Vitols and H.J. Oskam, Phys. Rev. A 8 (1973) 1860-1863.]

> Xe ⁺ + C ₂ H ₆	$\rightarrow \text{Xe} + \text{C}_2\text{H}_4^+ + \text{H}_2$	55 %	$k = 9.2 10^{-10}$	±20 %
	$\rightarrow \text{Xe} + \text{C}_2 \text{H}_5^+ + \text{H}$	10 %		
	$\rightarrow \text{Xe} + \text{C}_2 \text{H}_6^+$	35 %		
$\sim Xe_{2}^{+} + C_{2}H_{6}$	$\rightarrow \text{Xe C}_2 H_6^+ + \text{Xe}$		$k = 6.8 10^{-10}$	$\pm 20 \%$
[Kevin Giles et al.	, J. Phys. B: At. Mol. Opt.	Phys. 22 (1989) 87	3-883.	N.G.
Adams et al., J. Pł	nys. B: At. Mol. Phys. 13 (1980) 3235-3246.]		

```
Clear [nXe, nXe2, nXeC2H6, nC2H4, nC2H5, nC2H6]
Mathematica
                          evol = Assuming[{rXeXe2 > 0, rXe2XeC2H6 > 0, rXeC2H4 > 0, rXeC2H5 > 0,
                             rXeC2H6 > 0, n0Xe > 0, n0C2H4 > 0, x > 0},
                            Simplify[DSolve[
                               \{nXe'[x] = -(rXeXe2 + rXeC2H4 + rXeC2H5 + rXeC2H6) nXe[x],
                                nXe[0] = n0Xe,
                                nXe2'[x] = rXeXe2 nXe[x] - rXe2XeC2H6 nXe2[x],
                                nXe2[0] = 0,
                                nXeC2H6'[x] = rXe2XeC2H6nXe2[x],
                                nXeC2H6[0] = 0,
                                nC2H4'[x] = rXeC2H4nXe[x],
                                nC2H4[0] = n0C2H4,
                                nC2H5'[x] = rXeC2H5nXe[x],
                                nC2H5[0] = 0,
                                nC2H6'[x] = rXeC2H6nXe[x],
                                nC2H6[0] = 0,
                               {nXe[x], nXe2[x], nXeC2H6[x], nC2H4[x], nC2H5[x], nC2H6[x]},
                               x]]]
                          CForm[%]
                          n0C2H4 (rXeC2H4 + rXeC2H5 + rXeC2H6 + rXeXe2)) /
                               (rXeC2H4 + rXeC2H5 + rXeC2H6 + rXeXe2),
                            nC2H5\left[\,x\,\right]\,\rightarrow\,-\,\frac{\left(-1+\,\mathrm{e}^{-\,\left(rXeC2H4+rXeC2H5+rXeC2H6+rXeXe2\right)\,\,x}\right)\,\,n0Xe\,\,rXeC2H5}{rXeC2H4+rXeC2H5+rXeC2H6+rXeXe2}
```

Evolution of $Xe-C_2H_6$ (97-3)

Reactions in $Xe-CO_2-C_2H_6$

All reactions from $Xe-C_2H_6$ and in addition:

CO₂⁺ + CO₂ → CO₂ + CO₂⁺ 100 % $k = 3.7 \ 10^{-10} \pm 10 \%$ [V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. **62** (1986) 553-672.] CO₂⁺ + CO₂ + M → CO₂•CO₂⁺ + M $k = 2.4 \ 10^{-28}$ [B.M. Smirnov, Cluster Ions and Van Der Waals Molecules] CO₂⁺ + Xe → CO₂ + Xe⁺ 100 % $k = 6.0 \ 10^{-10} \pm 30 \%$ [V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. **62** (1986) 553-672.] CO₂⁺ + C₂H₆ → CO₂ + C₂H₅⁺ + H 32 ± 2% $k = 7.8 \pm 1.2 \ 10^{-10} + 30 \%$ [V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. **62** (1986) 553-672.]

[MasaharuTsuji, 10.1016/0168-1176(94)03996-8]

Evolution of $Xe-CO_2-C_2H_6$ (70-27-3)

- ▶ Initial ion mix for 100 kV/cm;
- CO₂⁺ rapidly forms clusters due to the large CO₂ fraction;
- CO₂ does not affect the dominance of $C_x H_y$ over Xe.
- \blacktriangleright Xe⁺_n for n > 2 are not shown because rates are not known.

$$Xe_{2}^{+} - Xe_{3}^{+}$$

▶ We have not found the rate comstant for Xe₃⁺ production in the literature, but H. Helm has measured [293 K]:

 $K_{e} = \frac{[Xe_{2}^{+}][Xe][Xe]}{[Xe_{3}^{+}][Xe]} = \frac{k_{r}}{k_{f}} = 2.8 \pm 0.5 \quad 10^{18}$ where k_{f} is the rate coefficient for the transformation of Xe_{2}^{+} to Xe_{3}^{+} , and k_{r} the rate for the reverse reaction.

► Given that $[Xe_3^+] / [Xe_2^+] = 3.6 \pm 0.6 \ 10^{-19} N$, the ratio of concentrations is 9.7 ± 1.6 at 293 K, atmospheric pressure and zero field.

What have we learned ?

► After 10 ns, the ion with the lowest IP remains:

In Xe without C₂H₆, this is Xe⁺ and related;
 if C₂H₆ is present, C_xH_y⁺ dominates.

▶ In the long run, Xe^+ is likely to form Xe_n^+

Mobility and stability of small Xe_n⁺

Mobilities are known for the smallest Xe clusters;
these are remarkably stable;

► ΔH for $n \ge 5$ clusters is nearly constant at ~0.1 eV.

	Xe _n ⁺	Mass	μ (<i>E</i> = 0, <i>T</i> =300 K)	$\Delta H n-1 \rightarrow n$	References
		[Da]	$[cm^2/V.s]$	[eV]	
	Xe ⁺	131.293	0.55	-	Helm, Viehland-Mason
	Xe_2^+	262.586	0.61	1.05 (5 %)	NIST, Helm 1976
	Xe ₃ ⁺	393.879	0.57	0.29 (5 %)	NIST, Helm 1976
[Ker	Xe ₄ ⁺	525.172	?	0.26 (3 %)	NIST, Hiraoka
	$\operatorname{Xe}_{5}^{+}$	656.465	?	0.11 (5 %)	NIST, Hiraoka

Mobility of ions in Xe

- E/N = 10 Td, extrapolated from higher E/N where needed (Xe⁺).
- Polarisation limit assuming $\alpha_{x_e} = 4.01$ D.
- ► Xe₂⁺ and Xe₃⁺ are below the polarisation limit.

[From the H.W. Ellis et al. compilations except Xe⁺ and Xe₂⁺, which are from P.N.B. Neves, 10.1063/1.3497651]

Large Xe_n clusters

- Much larger clusters, with a size of 10⁴, have been observed.
- They are produced by "supersonic adiabatic expansion through a nozzle."

Avalanche ions in $Ar-CO_2-CH_4$ (93-4-3)

	Ion	Energy [eV]	Rate [GHz]	Fraction
Ar	Ar ⁺	15.75961	56.65	91.1 %
CO_{2}	CO_{2}^{+}	13.776	1.815	2.9 %
2	CO_{2}^{+*}	17.314	0.2250	
	CO_{2}^{+*}	18.077	0.1261	
	O ⁺ ⁻	19.07	0.08213	
	CO ⁺	19.47	0.08430	
CH_{4}	$\operatorname{CH}_{4}^{+}$	12.65	1.996	3.2 %
т	CH_{3}^{+}	14.25	1.138	1.8 %
	CH ₂ ⁺	15.2	0.07641	
	-			

Magboltz 11.2bis, E = 100 kV/cm1 atm, 20 C

Evolution in $Ar-CO_2-CH_4$ (93-4-3)

