DMM & TMM: the Double and Triple Micro-Mesh gaseous structures for high gain and low ion-backflow purposes

> Zhiyong Zhang For the USTC MPGD group

State Key Laboratory of Particle Detection and Electronics, China University of Science and Technology of China

> RD51 collaboration meeting Jun.23, 2020

Outline

Motivation

Summary

- Double Micro-Mesh gaseous structure
	- Design and Fabrication
	- Performance Characterization
	- Optimization for further IBF suppression
- Triple Micro-Mesh gaseous structure
	- Design and performance study

Motivation : GPD

- Gaseous Photon Detectors (GPD) with MPGD
	- large area, high spatial and timing resolution, resistant to magnetic field, IBF suppression, low cost …
- Challenges

2020/06/23 RD51 Collaboration Meeting, Zhiyong Zhang (USTC)

Motivation: TPC

- Application of TPC in high-rate environments: ALICE upgrade, ILD, CEPC …
	- **CEPC** Very low IBF is the key: to minimize drift field distortion caused by ion spaceccharge

MPGD is the only solution so far. The IBF still need to be further reduced.

2020/06/23 RD51 Collaboration Meeting, Zhiyong Zhang (USTC)

DMM Design

- DMM: Double Micro-Mesh gaseous s ttoletype → mesh-type : to strongly reduce IBF
	- o Double mesh: cascading_{gy}ayalanche

Stacked two meshes

- Gap between the stacked meshes: 200-300um, serving as pre-amplification (PA)
- Gap between the bottom mesh and anode: $50-100$ um as secondary amplification (SA)
- Allows to achieve very high gain, and yet significantly reduce ion back-flow.

DMM Fabrication

• DMM is fabricated with the thermal bonding method developed at USTC, which provides a concise and etching-free process for manufacturing Micromegas detectors

PA Mesh

Thermal bonding film \times 2

SA Mesh

Thermal bonding film x 1

Anode PCB

The schematic diagram of DMM fabrication

More details on thermal bonding method, see Jianxin's talk on 26/06 morning:

"Production and performance of Micromegas detectors using thermal bonding method"

A 2.5cm×2.5cm DMM prototype

Gas Gain and Energy Resolution with ⁵⁵Fe

- Combined gain can reach up to 7×10^4 for 5.9 keV X-rays.
- Combined resolution remains almost constant and is close to PA-alone resolution, suggesting a close-to-full collection of primary electrons for the high-voltage configurations we used.

Previous results and validation

- Gain measured with X-ray energy spectrum $(Q_{full\text{-energy peak}}/Q_{Primary})$ is consistent with $I_{Anode}/I_{Primary}$.
- \Box No ion space charge effect is confirmed in the DMM test.

More details:

A high-gain, low ion-backflow double micro-mesh gaseous structure for single electron detection, *NIM-A , 889 (2018) 78–82.*

https://indico.cern.ch/event/757322/contributions/3387079/attachments/1840422/30 17748/DMM-MPGD2019.pdf

Also in backup slides

Can we further lower the IBF?

 Obviously, the IBF is depend on the geometry of the detector structure, in which the alignment, density, distance etc. of two meshes can be optimized.

Optimization for Low IBF

It's impractical to make any precise alignment of the two meshes. So setting the two meshes with a crossing angle is a practical way to ensure their mis-alignment.

Optimization for Extremely Low IBF

Larger gap increase the transverse diffusion of avalanche

Higher mesh density decrease the mesh pitch

Both of these increase the σ /l value, optimizing the IBF as a consequent.

Optimization Outcome For DMM

Optimization Outcome for DMM

This result fulfill the requirement of ϵ < 5 in some high rate TPC (CEPC-TPC), even operated in higher gain of >10000 is possible to improve the S/N.

Can the IBF be lower?

□ For the case of DMM, when we set PA at 550V and switch off SA, the $I_{drift}/I_{primary}$ was measured at ~1.3

Drift cathode (0V)

Pre-mesh (+HV)

 Sec-mesh (+HV) _ _ _ _ _ _

Anode (same to Sec-mesh)

 \rightarrow The PA only contributes \sim 0.3 for the ε factor, the SA dominates the total IBF

 So, adding another mesh on the DMM to suppress the SA ions is a easy option.

Let's go to TMM

TMM Design

• TMM: Triple Micro-Mesh gaseous stonechore mesh on the DMM o More stable gain, lower IBF from second avalanche… PA TA Drift region \sim 3-5 mm SA "Piggyback +"

Stacked three meshes

- Gap between the 1st and 2nd meshes: 200-300um, serving as pre-amplification (PA)
- Gap between the $2nd$ and $3rd$ meshes : $200-300$ um as secondary amplification (SA)
- Gap between the bottom mesh and anode: 50-100um as secondary amplification (TA)

Gain and energy resolution

- Gas gain reaches up to 7×10^4 for 5.9 keV X-rays
- Energy resolution at \sim 21% (FWHM) indicates a high collection efficiency of the primary electrons

IBF measurement for TMM

To optimize

Combined gain = PA gain \times SA trans \times SA gain \times TA trans \times TA gain

PA and TA voltages are fixed at 650V and 530V, this plot shows the combined gain, IBF and their product change with the variation of SA voltages

- Developed the DMM &TMM featuring high gain and low IBF
- Demonstrated the performance of DMM &TMM with small-size prototypes:
	- Gain: 7×10^4 for 5.9 keV X-rays and 3×10^6 for single electrons.
	- IBF ratio: down to \sim 0.03% for DMM, \sim 0.003% for TMM
- Potential applications
	- Gaseous photon detectors
	- **High-rate TPC readout**
	- Many others…
- Developed the DMM &TMM featuring high gain and low IBF
- Demonstrated the performance of DMM &TMM with small-size prototypes:
	- Gain: 7×10^4 for 5.9 keV X-rays and 3×10^6 for single electrons.
	- IBF ratio: down to \sim 0.03% for DMM, \sim 0.003% for TMM
- Potential applications
	- Gaseous photon detectors Thank you!
	- High-rate TPC readout
	- Many others…

Back-up

Electron Transparency

• Transparencies for electrons passing through PA and SA meshes are extracted by measuring PA, SA and total (PA and SA combined, DMM) gas gains

2020/06/23 RD51 Collaboration Meeting, Zhiyong Zhang (USTC) 22

Electron Transparency

Simulation study on Electron transparency with different mesh density

Ion Space-Charge Effect

Our IBF measurements are reliable in terms of ion space-charge effect (impact is negligible).

2020/06/23 RD51 Collaboration Meeting, Zhiyong Zhang (USTC) 24

Validation of IBF Measurement

- Gain measured with X-ray energy spectrum $(Q_{full\text{-energy peak}}/Q_{Primary})$ consistent with $I_{Anode}/I_{Primary}$
- I_{Anode} stays proportional to X-ray intensity in a rather wide range, suggesting no gas gain saturation in the IBF measurement.
- IBF ratios measured with 55Fe and X-ray tube are consistent

Performance Characterization

IBF measurement setting

DMM with Ar $(93%) + CO₂ (7%)$

- Electron transparency
- **Energy resolution and gas gain**
- **Ton back-flow ratio**
- DMM with Ne (80%) + CF_4 (10%) + C_2H_6 (10%)
	- Single photon electron response

Sec-amplification (SA)

Full energy peak due to the lateral angle photoelectrons and Auger electrons

Gain VS avalanche voltages

Towards large area

- \Box It is a crucial issue for the DMM (TMM) is to make a large area for real experiments
- \Box Thermal bonding method open the door to make this complex fabrication

A 150mm \times 150mm DMM prototype

Thermal bonding

Long-Term Stability

DMM: $240 \mu m - 450 -$ LPI650 \sim 24 hours of X-ray

Spark probability < 10- <u>୨</u>