

ERAM module

Varsaw University of Technology

HA-TPC

www.cea.fr

T2K/ND280 HA-TPC

ENCAPSULATED RESISTIVE ANODE MICROMEGAS DETECTOR

D. Attié, S. Bolognesi, D. Calvet, P. Colas, **A. Delbart**, S. Emery, S. Hassani, M. Lehuraux, J. Porthault, M. Riallot, F. Rossi, S. Suvorov *CEA/DSM-IRFU, Univ. Paris – Saclay*

> R. De Oliveira, B. Mehl, O. Pizzirusso, *CERN-EP-DT-EF, MPGD Lab.*

Within the T2K/ND280 - HA-TPC collaboration

ERAM : Encapsulated Resistive Anode Micromegas

ND280 upgrade ERAM modules history

2019 MM1 & 2020 ERAM#1 prototypes

- DLC resistivity mesaurements
- Beam tests (CERN & DESY)
- First operation of an ERAM with its final FEE

RD51 collaboration meeting, vidyo, june 22nd-26th 2020

T2K/ND280 UPGRADE : HA-TPCS

2X 12K/ HA-TPC (2022) 3X 12K/ V-TPC										
Parameter	Value	(2010)								
Overall $x \times y \times z$ (m)	$2.0 \times 0.8 \times 1.8$	0.85 x 2.2 x 1.8								
Drift distance (cm)	90									
Magnetic Field (T)	0.2									
Electric field (V/cm)	275									
Gas Ar- CF_4 - iC_4H_{10} (%)	95 - 3 - 2									
Drift Velocity $cm/\mu s$	7.8									
Transverse diffusion $(\mu m / \sqrt{cm})$	265									
Micromegas gain	1000									
Micromegas dim. z×y (mm)	340x420 (32)) 340x360 (72)								
Pad $z \times y$ (mm)	10 × 11	7x10								
N pads	36864	124272								
el. noise (ENC)	800									
S/N	100									

25

511

Sampling frequency (MHz)

N time samples

HA-TPCS MF with 8 ERAM modules ERAM modules Module Frame (MF)

T2K HA-TPC ERAM module (2020)

RESISTIVE ANODE BULK-MICROMEGAS WITH DIAMOND-LIKE CARBON ILC/TPC R&D: P. Colas et al.

Ref: M.S. Dixit et al. NIM A518, p. 721, 2004

Choice of the Resistive foil technology for the HA-TPC micromegas readout - Charge spreading which should enable keeping the ~600 μ m spatial resolution with larger pads and improves it at short drift distance \rightarrow less electronic channels, cost reduction - ASIC spark protection no longer needed \rightarrow more compact FEE, maximize HA-TPC acceptance - Encapsulated mesh @ GND + insulating layer \rightarrow potentially lower track distorsions & better S/N

For pads of ~11x10 mm², the Kapton foil resistivity could be **around** $0.4 M\Omega/\blacksquare$ and glue thickness ~75 µm for a good charge spreading (σ ~ 5 mm) RC ~50 ns/mm²

DE LA RECHERCHE À L'INDUSTRIE

Cea ERAM DEVELOPMENT HISTORY

Version	Delivery date	pad number (Y x Z) Pad size (mm) FE Type	DLC R (Mohm) foil	DLC R (Mohm) detector	Glue thick. (µm) (not measured)	RC (ns/mm2)	expected sigma (mm) for 200 ns peaking time	Goal	Main results
R&D (MMO) T2K v-TPC design 34 x 36 cm2	2018	36 x 38 (1726) 6.9 x 9.7 T2k v-TPC						charge spreading testing	
MM0-DLC1	january 2018		2.5 (not measured)	?	200	310	1,6	tested on HARP TPC @ CERN (08/2018) Nucl Instrum Meth A 957 (july 2019)	Manufacturing procedure validation achieved required performances for 412ns peaking
MM0-DLC2	june 2018		2.5 (not measured)	?	200	310	1,6		NIM A957 (july 2019)
MM0-DLC3#1	november 2018		0.29 to 0.40	~0.2	75	50	4,0	destroyed after connector soldering	bulk delamination after 216°C soldering
MM0-DLC3#2	january 2019		0.4 to 0.66 foil #2/7	0.40 to 0.64	75	100 to 159	2,2 to 2,8	at INFN	7/24 wrong connectors ! Non reproductible Resistivity change during manufacturing process
Pre-design (MM1) 34 x 42 cm2	2019	32 x 36 (1152) 10.09 x 11.18 ARC						Final size / first RC optimization FEE connection + shielding validation	
MM1-DLC1	april 2019		0.32 to 0.44 foil #7/7	0.2 to 0.27	75	50 to 67	3,5 to 4	tests at DESY 2019 tests on single-RMM 2019 prototype @ CERN (EHN1)	Detector / FEE interface validation Manufacturing process control achieved required performances for 412 ps peaking time
MM1-DLC2	june 2019		0.32 to 0.43 foil #5/7	0.2 to 0.27	75	50 to 67	3,5 to 4	FEE cooloing mock-up (feb 2020-)	to be compared to DLC1
Pre-series (ERAM) 34 x 42 cm2	2020	32 x 36 (1152) 10.09 x 11.18 ARC & Final FEE V1						Final design / Last RC optimization for 200 ns peaking time	
ERAM #01 (S/N002) ERAM#2	january 2020 30 august 2020 ?		0.28 to 0.40 foil #3/7	0.16 to 0.22	200 TbC	20 to 27	5,4 to 6,3	Desy test beam (oct 2020) Possible use of new DLC foils	First cosmic tracks on june 10 with final FEE
ERAM production 34 x 42 cm2	dec 2020 to feb 2022	32 x 36 (1152) 10.09 x 11.18 Final FEE							
ERAM #03-#10	feb 2021		goal : same ERAM #01 with better uniformity		TbC			New DLC foil production better R uniformity ?	first new DLC batch (7 foils) received 16 february (R x 2 !)

PROTOTYPES PARAMETERS

Name	2018 MM0-DLC#	2019 MM1-DLC#	2020 ERAM#
Readout PCB	Original T2K-TPC	HA-TPC	HA-TPC V2 + final F
Size	34 × 36 cm ²	34 × 42 cm²	34 × 42 cm ²
Pads	48 × 36 cm ²	32 × 36 cm ²	32 × 36 cm ²
Pad size	6,85 × 9,65 mm²	10,09 × 11,18 mm²	10,09 × 11,18 mm ²
Pad number	1728	1152	1152
Isolation layers	75 -200 μm glue + 50 μm APICAL	75 μm glue + 50 μm APICAL	200 μm glue + 50 μm APICAL

Spreading:

- **Expected charge** MM0-DLC1 (2,5 M Ω /sq): σ~ 1,6 mm for t=400 ns
- MM1-DLC1 (~0,25 MΩ/sq):
 - σ ~ 2,5 mm for t=200 ns

σ~ 3,5 mm for t=400 ns

2018 CERN test beam : 2-3 pads Multiplicity, \sim 320 µm @ 30 cm drift 2x better than non-resistive 2010 TPCs

$\sigma \sim 6 \text{ mm for t=400 ns}$

Oct 2020 DESY test On-going data taking with cosmics

Total x thickness < 20 mm

Ref: J. Porthaul/F. Rossi (Saclay Irfu) H. Przybilski (IFJ-PAN)

Main concepts

- AFTER chip designed for T2K (511 bucket SCA sampling@25 MHz, 120fC-600 fC, 100ns-2μs peaking time)
- New FEC with 8 AFTER chips which digitizes pad signal with an 8 ch. ADC (minimum dead time of 3.3 ms)
- FEM provides control (&trigger), synchronization, data aggregation, data buffering & data zero suppression
- The TDCM is a generic clock and trigger distributor and data aggregator (FPGA+2 xilinx CPU+1 GB DDR3)

THE HA-TPC MM1 PROTOTYPE

Encapsulated Resistive Anode Micromegas for T2K/ND280 HA-TPCs, RD51 collaboration meeting, vidyo, june 22nd – 26th, 2020| alain.delbart@cea.fr| 8/27

DLC RESISTIVITY MEASUREMENTS ERAM#1 (S/N 002) PICTURES

ERAM#1 before connector soldering

4 zones to measure final detector DLC resistivity

Bulk-micromegas side

Connector side

DLC was polarized @ 850V in air with a measured current of 7 à 8 nA.

MM1-DLC1 : RESISTIVITY MEASUREMENT WITH CERN "OCHI" PROBE

In blue : measured value outside detector area once detector is finished ~60% drop after DLC foil pressing & connector soldering

MM1-DLC1 : RESISTIVITY MEASUREMENT @ CERN WITH "OCHI" PROBE

MM1 ON ITS MINI-TPC CHAMBER ARC ELECTRONICS (2019)

MM1 PROTOTYPE TESTS BEAM @ DESY T24/1 (JUNE 2019)

- T2K gas Argon(95%)/CF4(3%)/isobutane(2%), 280 V/cm drift field
- Front-end electronics : 4 x 288-channel ARCv2-AFTER
- 4 GeV e- beam, PCMAG magnet set @ 0,2 T (ND280 B field)

PAD SIGNAL WAVEFORM MODELIZATION

Cea PADS MULTIPLICITY VS PEAKING TIME

Encapsulated Resistive Anode Micromegas for T2K/ND280 HA-TPCs, RD51 collaboration meeting, vidyo, june 22nd – 26th, 2020 alain.delbart@cea.fr 15/27

SPATIAL RESOLUTION : BIAS BETWEEN PADS (Y BEAM SCAN)

Column = z axis

The bias is still under investigations : may be due to large capacitance steps between neibouring pads coming from the PCB layout (pad to connector layout) (measurements to be done)

ERAM PCB DFS-2278 Cea PAD-CONNECTOR LAYOUT

17/27

NEW RESISTIVITY MEASUREMENTS @ CERN (SEPT 19) R. DE OLVEIRA / O. PIZZIRUSSO / E. AKAR

CERN calibrated custom-made probe

Two rulers were adjusted to take surface resistivity measurement from 10cm x 10cm squares. The bottom-left corner of the film was assigned as origin point.

By measuring the center of the squares, the film is scanned and results are transferred to Excel for 3D graph. This new probe will be used for ERAM production

Ref: Elcin Akar (CERN/EP-DT-EF)

Foil #4/7 used for ERAM #01

Comparison of resistivity measurement for ERAM#01 DLC foil #4

CERN Custom made probe 4th Film

Theoretical value 500 kΩ/□ CERN « Ochi » probe (2018) Foil size : 100x61cm

7-15 % difference better reproductibility with CERN probe ~2-3 %

ERAM#1 : RESISTIVITY MEASUREMENT WITH CERN CUSTOM MADE PROBE

AFTER BASED NEW ELECTRONICS FIRST COMPLETE READOUT TESTS

120 fCrange; 116 ns peaking time; 25 MHz Fwrite

- 800 to 1200 e-rms of pedestal noise seen in average for the 72 channels of each chip Still some debug needed (card shielding, power of FEC through the FEM unstabilities, ..)

But thes first card prototypes are a very robust design which validates the technical choices

including its coupling to the dectector

Ref : D. Calvet (Saclay Irfu) J-M Parraud (LpnHe)

COSMIC TEST BENCH FIRST OPERATION SINCE JUNE 9TH

Noise issues

- Identification of floating ground (FEM/FEC): rms~17-20 ADC after correction (> 100 ADC before)
- Using an external RCR HV filter, noise was lowered to the ususal 7-8 ADC rms
- \rightarrow GND or shielding problem with on-board HV filter

ERAM active area (mesh@ GND)

Experimental setup

VERY FIRST COSMIC TRACKS Ce2 **ERAM#1 + FINAL FEE (FEC & FEM V1 PROTOTYPES)**

#pads along \$

Experimental setup

- Zero-suppressed data
- Ddrift = 15 cm
- V_{cathode} = 4207 V (280 V/cm)
- V_{DLC} = 380 V
- Peaking time: 220 ns
- Sampling frequency: 25 MHz
- Trigger rate ~0.6 Hz

Pedestals RMS

10

Larger charge spreading to be confirmed, but less effective charge collection (thicker glue)

RESISTIVE DETECTOR & DUST ... WITH ERAM#1

After 2 days of operation current fluctuations occurred followed by a permanent ~400 kOhm DLC-mesh short

- A "Dark" zone was identified.
- Solved with washing using soap, rincing with deionized pressurized water & drying @ 50 °C during 5h
- → But reappeared after 3 more days ...
- → Probably due to dust released when the melamine protection was removed in clean room

■ The resistive anode Micromegas technology will be used for the new HA-TPCs of the T2K Near Detector upgrade.

■ The ERAM design is close to be ready for production. Data analysis of test beams of prototypes and modelization of the signal waveforms are on-going to fix the DLC foil resistivity and the RC of the structure. The sensitivity of the detector performances on the RC non-uniformities also needs to be characterized.

DLC resistivity seems under control for the ERAM production stage at CERN (DLC foil pressing & wave soldering) but the required tolerances on the DLC foils resistivity needs to be discussed & fixed with the manufacturer.

■ HA-TPCs are planned to be installed in ND280 in summer 2022. We are on the path to start the production of 32 ERAM modules at CERN and the corresponding FEE cards for 40k ch. at the end of this year after a test beam at DESY.

DE LA RECHERCHE À L'INDUSTRIE

2018 MM0 PRE-PROTOTYPE TEST BEAM @ CERN/PS-T9 SETUP

RESISTIVE MICROMEGAS MODULE MM0 TEST BEAM @ CERN/PS-T9 (AUGUST-SEPT 2018)

Gas volume : HARP TPC

- 1.5 m drift distance / 25 kV (166 kV/cm)
 - 25 l/h Argon(95%)/CF4(3%)/isobutane(2%)

Detector : MM0 module

- Micromegas module MM0 with $2.5 M\Omega / \blacksquare$ DLC
- horiz. x vert. = 36 x 48 pads
- each pad 0.97 x 0.69 cm
- nominal MM voltage 340 V (up to 380 V)
- V-TPC FEE: Sampling time 80 ns (12.5 MHz)
- nominal peaking time 600 ns

Data taking

- Cosmic trigger with 2 plastic scintillators +MPPC
- Fe55 source for 5.9 kEv X-rays

Beam : 0.5, \pm 0.8, 1, 2 GeV/c momentum

Fe 20 mm or Pb 5 mm Pb 50 -100 mm T9 MNP17 TPC MDX 15' Ge\ TOF2 ~14 TOF3 SuperFGD S₃ C1 C₂ SFGD

 π, e, p trigger

Particle	Selection
Electrons	Scintillators + Cherenkov
Protons (+Kaons)	S1(delayed) * S2 (delay proton TOF between S1 and S2)
Pions (+ muons)	Scintillators * protons * electrons
Cosmic ray	from the scintillators panels (only out of spill)

+ ⁵⁵Fe X-ray source in the middle of the cathode

RESISTIVE MICROMEGAS MODULE MM0 TEST BEAM @ CERN/PS-T9 SETUP : RESULTS

D. Attié et al., Nucl Instrum Meth A 957 (july 2019) DOI: 10.1016/j.nima.2019.163286

→ Next step : lower the number of electronics channels with full size ERAM module → Increase charge spreading for final ERAM segmentation (~10x11 mm² pads)

Ref: J. Porthaul/F. Rossi (Irfu)

CO2 MODULE FRAME SERVICES CABLING

- MF dimensions : 820 mm x 1865 mm
- cooling pipes connectors, cooling pipes path, HV and LW cables paths to be defined & fixed
- · Cooling pipes paths to be fixed in order to fix connectors orientation on ERAM
- Symmetries : ERAM can be flipped 180° on MF

DE LA RECHERCHE À L'INDUST

ERAM PCB FINAL 6 LAYERS STACK

EXAMPLE OF CAPACITANCE STEPS DUE TO THE PAD-CONNECTOR LAYOUT

Largest C steps between two connectors with no layout symetry

ERAM PCB : TOP (CONNECTOR SIDE) NEW DLC HV FILTER & OPTIONAL MESH CONNECTION

ERAM#01 RCR cabled filter (january 18, 2020)

Resistivity measurements of foil #1 & #3 With CERN custom made probe

Ζ

Comparison with previous "ochi" probe measurements

DE LA RECHERCHE À L'INDUSTR

Ref: Elcin Akar (CERN/EP-DT-EF)

CERN Custom made probe

7

1st	_											3rd										
Film	5	15	25	35	45	55	65	75	85	95	У	Film	5	15	25	35	45	55	65	75	85	95
5	532	615	708	554	467	430	360	339	290	293		5	540	593	723	512	430	378	345	329	281	255
15	526	625	708	559	442	384	348	350	286	270		15	554	599	742	526	419	392	342	333	282	264
25	525	597	712	556	462	377	342	346	305	270		25	569	593	738	516	432	378	348	354	287	273
35	520	600	726	512	431	376	327	338	293	278		35	570	625	745	565	445	380	360	340	275	275
45	546	623	728	570	453	380	349	328	282	267		45	547	615	733	532	460	403	368	370	283	296
55	537	599	721	532	425	383	360	332	283	296		55	582	642	765	561	472	398	365	334	280	292

CERN « Ochi » probe (2018) \rightarrow 10-20 % higher

MM1-DLC2 : RESISTIVITY MEASUREMENT WITH CERN "OCHI" PROBE

In blue boxes: measured value outside detector area once detector is finished

DE LA RECHERCHE À L'INDUSTRI

MM1-DLC2 : RESISTIVITY MEASUREMENT @ CERN WITH "OCHI" PROBE

Cea DLC MAGENTRON SPUTTERING

