

# Constraints to EFT parameters from ttH production 6 May 2020

Fabio Monti

### Outline

This seminar is based on the <u>lectures given by F. Maltoni and A. Pich</u> at the "Prefit20" school and on the article <u>arXiv:1607.05330</u>, and <u>arXiv:1704.01953</u>

• Motivation for a SM-EFT approach

• The case of ttH and single Higgs production

• Constraints to EFT parameters with CMS and ATLAS data

• Extended fit of all Higgs production processes

## Standard Model matching with data

- All the measurements consistent with SM expectation
- No unexpected resonances observed
  - $\circ$  Too weak couplings  $\rightarrow$  increase statistic or sensitivity
  - The energy scale of the new phenomena ( $\Lambda$ ) is too large
  - ➤ Indirect probe at smaller accessible energies is possible



## Standard Model Effective Field Theory

• PURPOSE: model independent description of the effects induced by the new phenomena at an energy scale  $E << \Lambda$ 



 Build most general lagrangian with the SM gauge symmetries using SM fields only:



## 4-fermions operators (dim=6)



 $q = q_L$  ,  $l = l_L$  ,  $u = u_R$  ,  $d = d_R$  ,  $e = e_R$  , p, r, s, t = generation indices

#### 0-fermions and 2-fermions operators (dim=6)

| X <sup>3</sup>                                                                                                                                                                                           |                                                                          | $\Phi^6$ and $\Phi^4 D^2$   |                                                                                      | $\psi^2 \Phi^3$              |                                                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| OG                                                                                                                                                                                                       | $f^{ABC} G^{A u}_\mu G^{B ho}_ u G^{C\mu}_ ho$                           | $\mathcal{O}_{\Phi}$        | $(\Phi^{\dagger}\Phi)^3$                                                             | $\mathcal{O}_{e\Phi}$        | $(\Phi^{\dagger}\Phi)(\bar{l}_{p}e_{r}\Phi)$                                                       |  |  |
| $\mathcal{O}_{\widetilde{G}}$                                                                                                                                                                            | $f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$            | $\mathcal{O}_{\Phi\square}$ | $(\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi)$                                       | $\mathcal{O}_{u\Phi}$        | $\left( \Phi^{\dagger} \Phi  ight) \left( ar{q}_{p} u_{r} \widetilde{\Phi}  ight)$                 |  |  |
| $\mathcal{O}_W$                                                                                                                                                                                          | $arepsilon^{IJK} W^{I u}_\mu W^{J ho}_ u W^{K\mu}_ ho$                   | $\mathcal{O}_{\Phi D}$      | $\left(\Phi^{\dagger}D^{\mu}\Phi ight)^{\star}\left(\Phi^{\dagger}D_{\mu}\Phi ight)$ | $\mathcal{O}_{d\Phi}$        | $\left( \Phi^{\dagger}\Phi ight) \left( ar{q}_{p}d_{r}\Phi ight)$                                  |  |  |
| $\mathcal{O}_{\widetilde{W}}$                                                                                                                                                                            | $arepsilon^{IJK} \widetilde{W}^{I u}_{\mu} W^{J ho}_{ u} W^{K\mu}_{ ho}$ |                             |                                                                                      |                              |                                                                                                    |  |  |
| <i>X</i> <sup>2</sup> Φ <sup>2</sup>                                                                                                                                                                     |                                                                          | $\psi^2 X \Phi$             |                                                                                      | $\psi^2 \Phi^2 D$            |                                                                                                    |  |  |
| $\mathcal{O}_{\Phi G}$                                                                                                                                                                                   | $\Phi^{\dagger}\Phi G^{A}_{\mu u}G^{A\mu u}$                             | $\mathcal{O}_{eW}$          | $(\bar{l}_p \sigma^{\mu u} e_r)  	au^I \Phi  W^I_{\mu u}$                            | $\mathcal{O}_{\Phi l}^{(1)}$ | $(\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi)(\overline{l}_{p}\gamma^{\mu}l_{r})$             |  |  |
| $\mathcal{O}_{\Phi\widetilde{G}}$                                                                                                                                                                        | $\Phi^{\dagger}\Phi^{}\widetilde{G}^{A}_{\mu u}G^{A\mu u}$               | $\mathcal{O}_{eB}$          | $(ar{l}_{ ho}\sigma^{\mu u}$ er $)$ $\Phi$ $B_{\mu u}$                               | $\mathcal{O}_{\Phi I}^{(3)}$ | $(\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\Phi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$ |  |  |
| $\mathcal{O}_{\Phi W}$                                                                                                                                                                                   | $\Phi^{\dagger}\Phi \; W^{I}_{\mu u} W^{I\mu u}$                         | $\mathcal{O}_{uG}$          | $(ar{q}_p\sigma^{\mu u}T^Au_r)\widetilde{\Phi}G^A_{\mu u}$                           | $\mathcal{O}_{\Phi e}$       | $(\Phi^\dagger i\overleftrightarrow{D}_\mu\Phi)(ar{e}_p\gamma^\mu e_r)$                            |  |  |
| $\mathcal{O}_{\Phi \widetilde{W}}$                                                                                                                                                                       | $\Phi^{\dagger}\Phi^{}\widetilde{W}^{I}_{\mu u}W^{I\mu u}$               | $\mathcal{O}_{uW}$          | $(ar{q}_{P}\sigma^{\mu u}u_{r}) \ 	au^{I}\widetilde{\Phi} \ W^{I}_{\mu u}$           | $\mathcal{O}_{\Phi q}^{(1)}$ | $(\Phi^\dagger i\overleftrightarrow{D}_\mu\Phi)(ar{q}_p\gamma^\mu q_r)$                            |  |  |
| $\mathcal{O}_{\Phi B}$                                                                                                                                                                                   | $\Phi^{\dagger}\Phi~B_{\mu u}B^{\mu u}$                                  | $\mathcal{O}_{uB}$          | $(ar{q}_p\sigma^{\mu u}u_r)\widetilde{\Phi}B_{\mu u}$                                | $\mathcal{O}_{\Phi q}^{(3)}$ | $(\Phi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\Phi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$      |  |  |
| $\mathcal{O}_{\Phi \widetilde{B}}$                                                                                                                                                                       | $\Phi^{\dagger}\Phi\;\widetilde{B}_{\mu u}B^{\mu u}$                     | $\mathcal{O}_{dG}$          | $(ar{q}_p\sigma^{\mu u}T^Ad_r)\Phi G^A_{\mu u}$                                      | $\mathcal{O}_{\Phi u}$       | $(\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi)(\bar{u}_{p}\gamma^{\mu}u_{r})$                  |  |  |
| $\mathcal{O}_{\Phi WB}$                                                                                                                                                                                  | $\Phi^\dagger 	au^I \Phi \; W^I_{\mu u} B^{\mu u}$                       | $\mathcal{O}_{dW}$          | $(ar{q}_p\sigma^{\mu u}d_r)~	au^I\Phi~W^I_{\mu u}$                                   | $\mathcal{O}_{\Phi d}$       | $(\Phi^\dagger i\overleftrightarrow{D}_\mu\Phi)(ar{d}_p\gamma^\mu d_r)$                            |  |  |
| $\mathcal{O}_{\Phi \widetilde{W}B}$                                                                                                                                                                      | $\Phi^\dagger 	au^I \Phi \; \widetilde{W}^I_{\mu u} B^{\mu u}$           | $\mathcal{O}_{dB}$          | $(ar{q}_p\sigma^{\mu u}d_r)\PhiB_{\mu u}$                                            | $\mathcal{O}_{\Phi ud}$      | $i(\widetilde{\Phi}^{\dagger}D_{\mu}\Phi)(ar{u}_{p}\gamma^{\mu}d_{r})$                             |  |  |
| $q = q_L$ , $l = l_L$ , $u = u_R$ , $d = d_R$ , $e = e_R$ , $\overleftrightarrow{D_{\mu}^{l}} \equiv \tau^{l} \overrightarrow{D_{\mu}} - \overleftarrow{D_{\mu}} \tau^{l}$ , $p, r =$ generation indices |                                                                          |                             |                                                                                      |                              |                                                                                                    |  |  |

Grzadkowski-Iskrzynski-Misiak-Rosiek

SMEFT operators relevant for ttH production



## Other SMEFT operators in ttH production

- Significant contribution from 4-fermions operators
  - Assumption: their contribution can be constrained using ttbar production process
  - $\circ~$  Better approach would be a simultaneous fit of  $\sigma_{ttH}$  and  $\sigma_{ttbar}$  or take the ratio  $\sigma_{ttH}/\sigma_{ttbar}$



## Additional processes to gain sensitivity

- ttH production is statistically limited
- Break degeneracy between operators



#### Procedure

$$\begin{split} \sigma &= \sigma_{SM} + \sum_{i} \frac{1 \mathrm{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq j} \frac{1 \mathrm{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij} \\ & \text{Interference} \\ \mathrm{SM-EFT\ diagrams} & |\mathrm{EFT\ diagrams}|^2 \end{split}$$

- 1 MG5\_aMC framework to compute total  $\sigma_{SM}$ ,  $\sigma_i$ , and  $\sigma_{ij}$ • Also differentially in  $p_T(H)$ , rapidity, ...
- 2 Fit of data to extract the  $C_i$  coefficients
  - Inclusive cross section (+ distributions)
- Theoretical uncertainties
  - pdf, factoriz. and renormaliz. scales as in SM calculations
  - $\circ~$  EFT scale uncertainty: missing higher orders in the  $\alpha_s$  expansion of the cross sections
  - $\circ$  dimension-8 operators  $\rightarrow$  neglected

## SMEFT calculation at QCD NLO

- Calculation up to O(  $\alpha_s^3 \alpha$  )
- More precise prediction and smaller theoretical uncertainties
- NLO corrections might change differential cross sections
- Loop induced effects under control
- Renormalization to re-absorb UV divergences
  - Dependence on an 'arbitrary' scale  $\mu$
  - QCD-induced mixing of the  $C_i$  parameters

$$\begin{split} \frac{dC_i(\mu)}{d\log\mu} &= \frac{\alpha_s}{\pi} \gamma_{ij} C_j(\mu), \quad \gamma = \begin{pmatrix} -2 & 16 & 8 \\ 0 & -7/2 & 1/2 \\ 0 & 0 & 1/3 \end{pmatrix} \\ \text{with } (C_1, C_2, C_3) &= (C_{t\phi}, C_{\phi G}, C_{tG}) \end{split}$$

#### Inclusive cross sections for ttH production

| $13 { m TeV}$            | $\sigma$ LO                                              | $\sigma/\sigma_{SM}$ LO                                   | $\sigma$ NLO                                                    | $\sigma/\sigma_{SM}$ NLO                                 | Κ    |
|--------------------------|----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|------|
| $\sigma_{SM}$            | $0.464\substack{+0.161+0.000+0.005\\-0.111-0.000-0.004}$ | $1.000\substack{+0.000+0.000+0.000\\-0.000-0.000-0.000}$  | $0.507\substack{+0.030+0.000+0.007\\-0.048-0.000-0.008}$        | $1.000\substack{+0.000+0.000+0.000\\-0.000-0.000-0.000}$ | 1.09 |
| $\sigma_{t\phi}$         | $-0.055^{+0.013+0.002+0.000}_{-0.019-0.003-0.001}$       | $-0.119\substack{+0.000+0.005+0.000\\-0.000-0.006-0.000}$ | $-0.062\substack{+0.006+0.001+0.001\\-0.004-0.001-0.001}$       | $-0.123^{+0.001+0.001+0.000}_{-0.001-0.002-0.000}$       | 1.13 |
| $\sigma_{\phi G}$        | $0.627_{-0.153-0.067-0.005}^{+0.225+0.081+0.007}$        | $1.351_{-0.011-0.145-0.001}^{+0.011+0.175+0.002}$         | $0.872^{+0.131+0.037+0.013}_{-0.123-0.035-0.016}$               | $1.722_{-0.089-0.068-0.005}^{+0.146+0.073+0.004}$        | 1.39 |
| $\sigma_{tG}$            | $0.470_{-0.114-0.002-0.004}^{+0.167+0.000+0.005}$        | $1.014\substack{+0.006+0.000+0.001\\-0.006-0.004-0.001}$  | $0.503\substack{+0.025+0.001+0.007\\-0.046-0.003-0.008}$        | $0.991\substack{+0.004+0.003+0.000\\-0.010-0.006-0.001}$ | 1.07 |
| $\sigma_{t\phi,t\phi}$   | $0.0016^{+0.0005+0.0002+0.0000}_{-0.0004-0.0001-0.0000}$ | $0.0035^{+0.0000+0.0004+0.0000}_{-0.0000-0.0003-0.0000}$  | $0.0019\substack{+0.0001+0.0001+0.0000\\-0.0002-0.0000-0.0000}$ | $0.0037^{+0.0001+0.0002+0.0000}_{-0.0000-0.0001-0.0000}$ | 1.17 |
| $\sigma_{\phi G,\phi G}$ | $0.646_{-0.178-0.107-0.010}^{+0.274+0.141+0.018}$        | $1.392^{+0.079+0.304+0.025}_{-0.066-0.231-0.014}$         | $1.021^{+0.204+0.096+0.024}_{-0.178-0.085-0.029}$               | $2.016_{-0.178-0.167-0.027}^{+0.267+0.190+0.021}$        | 1.58 |
| $\sigma_{tG,tG}$         | $0.645^{+0.276+0.011+0.020}_{-0.178-0.015-0.010}$        | $1.390^{+0.082+0.023+0.028}_{-0.069-0.031-0.016}$         | $0.674\substack{+0.036+0.004+0.016\\-0.067-0.007-0.019}$        | $1.328^{+0.011+0.008+0.014}_{-0.038-0.014-0.018}$        | 1.04 |
| $\sigma_{t\phi,\phi G}$  | $-0.037^{+0.009+0.006+0.000}_{-0.013-0.007-0.000}$       | $-0.081^{+0.001+0.012+0.000}_{-0.001-0.015-0.000}$        | $-0.053^{+0.008+0.003+0.001}_{-0.008-0.004-0.001}$              | $-0.105^{+0.006+0.006+0.000}_{-0.009-0.007-0.000}$       | 1.42 |
| $\sigma_{t\phi,tG}$      | $-0.028^{+0.007+0.001+0.000}_{-0.010-0.001-0.000}$       | $-0.060^{+0.000+0.002+0.000}_{-0.000-0.003-0.000}$        | $-0.031^{+0.003+0.000+0.000}_{-0.002-0.000-0.000}$              | $-0.061^{+0.000+0.000+0.000}_{-0.000-0.001-0.000}$       | 1.10 |
| $\sigma_{\phi G,tG}$     | $0.627^{+0.252+0.053+0.014}_{-0.166-0.047-0.008}$        | $1.349^{+0.054+0.114+0.016}_{-0.046-0.100-0.009}$         | $0.859^{+0.127+0.021+0.017}_{-0.126-0.020-0.022}$               | $1.691^{+0.137+0.042+0.013}_{-0.097-0.039-0.017}$        | 1.37 |

value ± scale unc. ± EFT scale unc. ± pdf unc.

- Scale unc. reduced taking the ratios  $\sigma/\sigma_{SM}$
- k-factors ( $\sigma_{\rm NLO}/\sigma_{\rm LO}$ ) up to 1.58

#### Differential cross sections for ttH production



13

#### Differential cross sections for ttH production

⊐.

g



14

## Fit to Run1 and Run2(2015) data

- H production measurement (gluon-fusion) at ATLAS and CMS in the exclusive decay channels  $H \rightarrow WW$ ,  $H \rightarrow ZZ$ ,  $H \rightarrow TT$ ,  $H \rightarrow \gamma \gamma$
- ttH production measurement at ATLAS and CMS in the exclusive decay channels H-multilepton,  $H \rightarrow bb$ ,  $H \rightarrow \gamma\gamma$
- $\succ$  EFT operators change Γ(H→γγ), Γ(H→gg), and Γ<sub>TOT</sub>
  - considered in the fit

Negligible in many BSM scenarios

|                                             | Individual         | Marginalised    | $C_{tG}$ fixed  |
|---------------------------------------------|--------------------|-----------------|-----------------|
| $C_{t\phi}/\Lambda^2 \; [\text{TeV}^{-2}]$  | [-3.9, 4.0]        | [-14, 31]       | [-12,20]        |
| $C_{\phi G}/\Lambda^2 \; [\text{TeV}^{-2}]$ | [-0.0072, -0.0063] | [-0.021, 0.054] | [-0.022, 0.031] |
| $C_{tG}/\Lambda^2 \; [\text{TeV}^{-2}]$     | [-0.68, 0.62]      | [-1.8, 1.6]     |                 |

## "current" and future prospects

- Assume  $C_{tG}$  fixed to zero
- Interesting to re-run with full Run2 dataset...



## Extend fit to full EFT Higgs couplings

- Consider all Higgs production and decay modes
- Change operator basis→new coefficients
  - Higgs couplings to the SM gauge bosons:  $\delta c_z$ ,  $c_{zz}$ ,  $c_z$ ,  $c_z$ ,  $c_{z\gamma}$ ,  $c_{\gamma\gamma}$ ,  $c_{\gamma\gamma}$ ,  $c_{gg}$
  - Deformations of the fermion Yukawa's:  $\delta y_t$ ,  $\delta y_b$ ,  $\delta y_r$
  - Higgs trilinear self-coupling:  $\kappa_{\lambda}$

• Linear expansion of XS and BR (SMEFT at LO)  

$$\sigma/\sigma_{SM}(ZH) = 1 + 2\delta c_z + 8.3 c_z + 3.5 c_{zz} - 0.67 c_{zy} - 0.30 c_{yy}$$
  
 $\sigma/\sigma_{SM}(ggF) = 1 + 2c_{gg} + 2.06\delta y_t - 0.06\delta y_b$   
 $\sigma/\sigma_{SM}(ttH) = 1 - 2\delta y_t$   
 $\Gamma/\Gamma_{SM}(yy) = 1 + 2.56\delta c_z + 2.13 c_z + 0.98 c_{zz} - 0.066 c_{zy} - 2.46 c_{yy} - 0.56\delta y_t$   
 $\succ$  Coefficients computed also differentially in  $p_T(H)$ 

### Caveats for the Higgs global fit

- Neglected operators not directly related with Higgs couplings
- Many free parameters → prospects for HL-LHC

Expected uncertainties on signal strength at HL-LHC (3000 fb<sup>-1</sup>)

| Proces                        | s                | Combination | Theory | Experimental |
|-------------------------------|------------------|-------------|--------|--------------|
|                               | ggF              | 0.07        | 0.05   | 0.05         |
|                               | VBF              | 0.22        | 0.16   | 0.15         |
| $H  ightarrow \gamma \gamma$  | $t\overline{t}H$ | 0.17        | 0.12   | 0.12         |
|                               | WH               | 0.19        | 0.08   | 0.17         |
|                               | ZH               | 0.28        | 0.07   | 0.27         |
|                               | ggF              | 0.06        | 0.05   | 0.04         |
|                               | VBF              | 0.17        | 0.10   | 0.14         |
| $H \rightarrow ZZ$            | $t\overline{t}H$ | 0.20        | 0.12   | 0.16         |
|                               | WH               | 0.16        | 0.06   | 0.15         |
|                               | ZH               | 0.21        | 0.08   | 0.20         |
| $H \rightarrow WW$            | ggF              | 0.07        | 0.05   | 0.05         |
| $H \rightarrow W W$           | VBF              | 0.15        | 0.12   | 0.09         |
| $H \to Z\gamma$               | incl.            | 0.30        | 0.13   | 0.27         |
| $U \rightarrow b\overline{b}$ | WH               | 0.37        | 0.09   | 0.36         |
| $\Pi \rightarrow 00$          | ZH               | 0.14        | 0.05   | 0.13         |
| $H \to \tau^+ \tau^-$         | VBF              | 0.19        | 0.12   | 0.15         |

## Results global fit with $\kappa_{\lambda} = 1$ at HL-LHC (3000 fb<sup>-1</sup>)

• Strong correlation among some parameter



#### Degeneracy when floating $\kappa_{\lambda}$



## Results global fit with floating $\kappa_{\lambda}$ at HL-LHC (3000 fb<sup>-1</sup>)

- Include Higgs pair production to remove degeneracy
  - HH→bbɣɣ, bbbb, bbWW, bbtt
- Double Higgs production sensitive to other operators



## Impact of distribution shapes

- EFT couplings significantly change differential cross section of single Higgs (WH,ZH,ttH) and double Higgs production
  - Split WH,ZH,ttH in bins of  $p_T(H)$
  - $\circ$  Split HH in bins of m<sub>HH</sub>



## Summary

- SMEFT is a powerful tool for BSM searches at  $E << \Lambda$
- SMEFT predictions at NLO(QCD) for ttH, H, H+j processes
  - Focus on  $C_{tG}$ ,  $C_{t\phi G}$ , and  $C_{\phi G}$  operators
  - Results with Run1+Run2(2015) data of CMS and prospects for HL-LHC
  - Interesting combination with ttbar measurement
- Presented SMEFT predictions at LO for all single Higgs production processes
  - Full set of Higgs coupling operators
  - Higgs pair production process to remove degeneracy
  - Prospects for HL-LHC
- Interesting to run with full Run 2 dataset

# BACKUP

## HH process to gain sensitivity

- ttH production is statistically limited
- Break degeneracy between operators



## "current" and future prospects

- Assume  $C_{to}$  fixed to zero
- Interesting to re-run with full Run2 dataset...



## "current" and future prospects

- Assume  $C_{\phi G}$  fixed to zero
- Interesting to re-run with full Run2 dataset...



#### Lagrangian in the new operator basis

- Change operator basis
  - Higgs couplings to the SM gauge bosons:  $\delta c_z$ ,  $c_{zz}$ ,  $c_z$ ,  $c_z$ ,  $c_{zy}$ ,  $c_{yy}$ ,

$$C_{gg}$$

$$C$$

 The other coefficients appearing in the lagrangian can be expressed as a function of the operator basis 28

## Results global fit with $\kappa_{\lambda} = 1$

- Strong correlation among some parameter

| $\left( \hat{c}_{gg} \right)$  |        | (0.07 (0.02)) | 1 -0.01 | -0.02 | 0.03  | 0.08  | 0.01  | -0.71                | 0.03  | 0.01  |
|--------------------------------|--------|---------------|---------|-------|-------|-------|-------|----------------------|-------|-------|
| $\delta c_z$                   |        | 0.07 (0.01)   | 1       | -0.45 | 0.36  | -0.61 | -0.33 | 0.18                 | 0.89  | 0.53  |
| $c_{zz}$                       |        | 0.64(0.02)    |         | 1     | -0.99 | 0.69  | 0.11  | 0.38                 | -0.47 | -0.74 |
| $c_{z\Box}$                    |        | 0.24(0.01)    | 8       |       | 1     | -0.58 | -0.23 | -0.42                | 0.42  | 0.71  |
| $\hat{c}_{z\gamma}$            | $=\pm$ | 4.94(0.65)    |         |       |       | 1     | -0.58 | 0.09                 | -0.46 | -0.63 |
| $\hat{c}_{\gamma\gamma}$       |        | 0.08 (0.02)   |         |       |       |       | 1     | 0.14                 | 0.04  | 0.04  |
| $\delta y_t$                   |        | 0.09(0.02)    |         |       |       |       |       | 1                    | 0.25  | -0.08 |
| $\delta y_b$                   |        | 0.14(0.03)    |         |       |       |       |       |                      | 1     | 0.57  |
| $\left(\delta y_{\tau}\right)$ | 1      | (0.17 (0.09)) | L       |       |       |       |       |                      |       | 1     |
|                                |        |               |         |       |       |       |       |                      |       |       |
| $\left( \hat{c}_{gg} \right)$  |        | (0.07 (0.02)) | 1 0.04  | -0.01 | -0.01 | 0.04  | 0.31  | - <mark>0.7</mark> 6 | 0.05  | 0.02  |
| $\delta c_z$                   |        | 0.05 (0.01)   | 1       | -0.07 | -0.26 | 0.01  | 0.01  | 0.36                 | 0.88  | 0.27  |
| $c_{zz}$                       |        | 0.05 (0.02)   |         | 1     | -0.87 | 0.13  | 0.20  | 0.03                 | -0.07 | -0.06 |
| $c_{z\Box}$                    |        | 0.02 (0.01)   |         |       | 1     | -0.09 | -0.09 | -0.09                | -0.17 | 0.08  |
| $\hat{c}_{z\gamma}$            | = ±    | 0.09(0.09)    |         |       |       | 1     | 0.05  | -0.02                | -0.02 | -0.03 |
| $\hat{c}_{\gamma\gamma}$       |        | 0.03(0.02)    |         |       |       |       | 1     | -0.32                | -0.19 | -0.12 |
| $\delta y_t$                   |        | 0.08(0.02)    |         |       |       |       |       | 1                    | 0.50  | 0.28  |
| $\delta y_b$                   |        | 0.12(0.03)    |         |       |       |       |       |                      | 1     | 0.36  |
| $\left(\delta y_{\tau}\right)$ |        | (0.11 (0.09)) | L       |       |       |       |       |                      |       | 1     |