Field Off Scattering Studies

John Nugent

University of Glasgow

john.nugent@glasgow.ac.uk

21/5/2020

What is a systematic error?

• Systematic errors are errors that are not determined by chance but are introduced by an inaccuracy inherent to the system

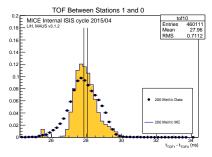
What are we measuring in this analysis?

Multilple Coulomb scattering is being measured

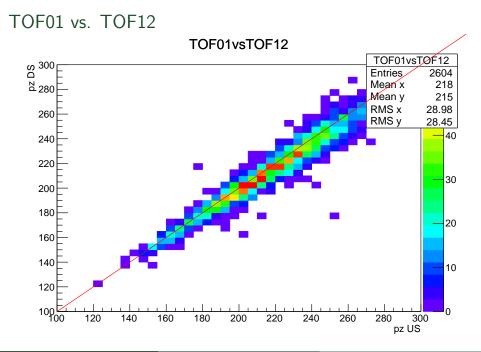
$$\Theta = \frac{13.6 \text{ MeV/c}}{p_{\mu}\beta} \sqrt{\frac{z}{X_0}} \left(1 + 0.038 \ln \frac{z}{X_0} \right).$$
(1)

- is dependant on p_{μ}
- Select monochromatic beam of $\mu \rightarrow$ narrow TOF window \rightarrow narrow p_{μ} range
- $\bullet\,$ Mean of p_{μ} for selected sample at a given value i.e. 200 MeV/c

Momentum Calculation


Momentum is measured with

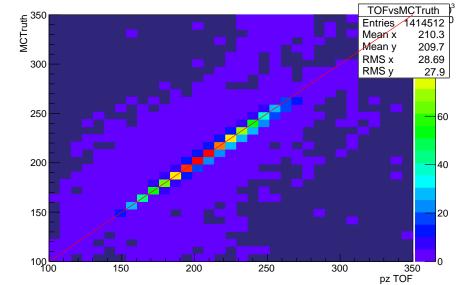
$$p = rac{m}{\sqrt{rac{t_{\mu}^2}{t_e^2} - 1}}$$
 (2)


- **②** If there is a hit in TOF2 this is done with TOF1+2 information
- If there is no hit in TOF2 this is done with TOF0+1
- Only in the case of TOF0+1 is a correction applied to account for the energy loss in the channel.

Where does primary error come from?

- All error in p_{μ} comes from TOF measurement
- Largest source of error in analysis
- $\bullet~\text{Resolution}$ of TOFs $\sim 70~\text{ps} \rightarrow 3~\text{MeV/c}$
- Analysis done in 200 ps bins
- $\bullet~\mu$ can either be in selected bin or TOF bin above or below

- Why 200 ps bins?
 - Need statistics in each bin
 - Larger than resolution of TOFs



John Nugent (UGlas)

21/5/2020 6 / 11

Truth P vs. recon

TOFvsMCTruth

Comparing to a model simulated at a given p_{μ}

- \bullet Sometimes μ in sample selected will systematically have a p_{μ} higher than that quoted
- (numbers for illustration only)
- bin from 26.8-27.0 ns
- \bullet i.e. measured TOF 27.0 ns actually \rightarrow 27.07 ns
- ullet i.e. measured p_μ 200 MeV/c actually \rightarrow 197 MeV/c
- We don't know this and we will never know this it is due to the intrinsic resolution of the TOFs
- Cutting in p_{μ} does nothing to change this

Comparing to a model simulated at a given p_{μ}

- $\bullet\,$ Sometime μ which are in the next TOF bin will be selected by analysis
- The σ_P of this sample is 200 MeV/c
 - ▶ actually mean is 201 MeV/c, within resolution of TOFs
- We crosscheck our methodology in MC, σ_P is consistent Truth/Recon but it can always vary

Comparing to a model simulated at a given p_{μ}

- μ at different *P* will contribute to scattering distribution differently
- Change the width of distribution and measured probabily of scattering at each angle
- These are the values that we report at the end of the analysis
- ... comparison is only valid when quoting the result including an error on how each paramter varies as a function of the momentum of the selected sample
- How can this error be quantified?
- Vary the TOF window selected by the resolution of the TOFs and repeat measurement $\rightarrow \Theta \pm$ (some error)

Deconvolution

- Final result is after deconvolution
- Two samples are selected
 - ► LiH
 - Empty
- Two different P measurements
- Use one sample to deconvolve the other
- \bullet Truth 20 mrad (decon with) 14 mrad \rightarrow 15 mrad
- Recon 21 mrad (decon with) 13 mrad ightarrow 16 mrad
- NOT due to deconvoluation see my talk 22/2/19
- Due to the momentum of the selected samples
- \bullet Not determined by chance but introduced by an inaccuracy inherent to the system \to systematic error

Momentum Correction

 Bethe-Bloch most probable energy loss for known material budget in channel

$$\Delta_{p} = \xi \left[\ln \frac{2mc^{2}\beta^{2}\gamma^{2}}{I} + \ln \frac{\xi}{I} + j - \beta^{2} - \delta(\beta\gamma) \right]$$
(3)

where

$$\xi = (K/2)\langle Z/A \rangle z^2 (x/B^2)$$

$$I = \text{mean excitation energy} \qquad (4)$$

$$j = 0.2$$

Tracks crossing the diffuser ring are cut