

# Diffractive physics in ALICE

- ALICE detector
- Diffractive gap trigger in ALICE
- Central barrel performance
- Central diffraction in ALICE
- Hunt for the odderon
- Conclusions, outlook

## The ALICE experiment



Acceptance central barrel

$$-0.9 < \eta < 0.9$$

Acceptance muon spectr.

$$-2.5 < \eta < -4.$$





## ALICE diffractive gap trigger

→ additional forward detectors (no particle identification)

$$1 < \eta < 5$$
  
 $-4 < \eta < -1$ 

 $\rightarrow$  definition of gaps  $\eta_+$ ,  $\eta_-$ 

**p-p luminosity**  $L = 5x10^{30} cm^{-2} s^{-1}$ :

 $\rightarrow$  one interaction/80 bunches

diffractive L0 trigger (hardware):

Pixel or TOF mult (central barrel)

gap 
$$\eta_+$$
:  $3 < \eta < 5 \rightarrow \Delta \eta \sim 0.5$ 

gap 
$$\eta$$
:  $-2 < \eta < -4 \rightarrow \Delta \eta \sim 0.5$ 

high level trigger (software):

$$-3.7 < \eta < 5$$

 $\rightarrow$  improved including ADA, ADD



# ALICE central barrel comparison to other LHC detectors



#### low magnetic field

|       | Magn.<br>field (T) | P <sub>T</sub> cutoff<br>GeV/c | Material<br>x/x0 (%) |
|-------|--------------------|--------------------------------|----------------------|
| ALICE | 0.2-0.5            | 0.1-0.25                       | 7                    |
| ATLAS | 2.0                | 0.5 (0.08)                     | 20                   |
| CMS   | 4.0                | 0.75<br>(0.2)                  | 30                   |
| LHCb  | 4Tm                | 0.1                            | 3.2                  |

#### η-pt acceptance



 $\rightarrow low p_T trigger ?$ 

## ALICE central barrel particle identification





Particle identification by dE/dx in TPC as function of momentum



Particle identification by time-of-flight information for non-relativistic momenta

#### ALICE central barrel electron/photon identification







electron-pion separation in transition radiation detector at  $p_T$ = 2 GeV/c

TRD L1 trigger on electrons  $\rightarrow$  trigger on vector mesons  $J/\Psi$ , Y by  $e^+e^-$  decay

Measure photon conversions by identifying e<sup>+</sup>e<sup>-</sup> in central barrel (V-topology)

 $\rightarrow$ identify  $\pi^0$ ,  $\eta$  at midrapidity

## ALICE acceptance



ALICE acceptance matched to diffractive central production:
 double pomeron, (γ-pomeron, odderon-pomeron)





#### Data taking:

pp @ L = 
$$5x10^{30}$$
 cm<sup>-2</sup>s<sup>-1</sup>  $(\rightarrow \frac{d\sigma}{dy}\Big|_{y=0} \sim nb$ )  
pPb @ L =  $10^{29}$  cm<sup>-2</sup>s<sup>-1</sup>  
PbPb @ L =  $10^{27}$  cm<sup>-2</sup>s<sup>-1</sup>



#### ALICE forward calorimeter



- neutron calorimeter on each side
  - Placed at 116 m from interaction region
  - Measures neutral energy at 0°
- Diffractive events with and without proton breakup:
  - pp  $\rightarrow$  ppX : no energy in zero degree calorimeters
  - pp  $\rightarrow$  pN\*X, N\*N\*X: energy in one or in both calorimeters

*Identify the three topologies:* 



Α



B



C

$$\frac{\sigma_A}{\sigma_B} \equiv f(x_1, x_2, ...) \frac{\sigma_{elast}}{\sigma_{SD}}$$

$$\frac{\sigma_B}{\sigma_C} \equiv g(x_1, x_2, ...) \frac{\sigma_{SD}}{\sigma_{DD}}$$

$$\frac{\sigma_A}{\sigma_C} = h (x_1, x_2, ...) \frac{\sigma_{elast}}{\sigma_{DD}}$$

 $\rightarrow$  what are  $f(x_i)$ ,  $g(x_i)$ ,  $h(x_i)$ ?



#### ALICE 2010-2011: Central diffractive events

Compare double gap events to min bias inelastic events of same multiplicity

- 1) Enhanced production cross section of glueball states: *study resonances in central region when two rapidity gaps are required*
- 2) Slope pomeron traj.  $\alpha$  '  $\sim 0.25 \text{GeV}^{-2}$  in DL fit,  $\alpha$  '  $\sim 0.1 \text{GeV}^{-2}$  in vector meson production at HERA, t-slope triple pom-vertex  $< 1 \text{GeV}^{-2}$ 
  - $\rightarrow$  mean  $k_t$  in pomeron wave function  $\alpha' \sim 1/k_t^2$  probably  $k_t > 1$  GeV
  - $\rightarrow$  < $p_T$ > secondaries in double pomeron > < $p_T$ > secondaries min bias
- 3)  $k_t > 1$  GeV implies large effective temperature
  - $\rightarrow K/\pi$ ,  $\eta/\pi$ ,  $\eta'/\pi$  ratios enhanced





Data taken by Axial Field Spectrometer at ISR  $\sqrt{s} = 63$  GeV (R807) very forward drift chambers added for proton detection



T.Akesson et al 1986:

Flavour independence: equal numbers of  $\pi^+\pi^-$  and K<sup>+</sup>K<sup>-</sup> pairs for masses larger than 1 GeV



# $\chi_c$ as test of central exclusive production



Formalism of central exclusive production predicts cross sections for  $\gamma$   $\gamma$ , dijets,  $\chi c, \chi b$ 



#### **Ingredients**

- unintegrated gluon distribution
- cross section  $gg \rightarrow X$
- Sudakov factor, no additional hard gluon
- soft rescattering, suppression factor S<sup>2</sup>

ALICE: measure  $\chi_c$  with rapidity gap on either side

# χ<sub>c</sub> measurement



#### $\chi_c$ : *P-wave, spin triplet:*

|             | Mass  | Width | $Br(\chi \rightarrow J/\psi \gamma)$ |
|-------------|-------|-------|--------------------------------------|
|             | [MeV] | [MeV] |                                      |
| $\chi_{c0}$ | 3415  | 10    | 0.01                                 |
| $\chi_{c1}$ | 3510  | 1     | 0.36                                 |
| $\chi_{c2}$ | 3556  | 2     | 0.2                                  |

Br(ππ) Br(K+K-) Br(pp) Br(ΛΛ)  

$$\chi_{c0}$$
 7x10-3 6x10-3 2x10-4 4x10-4  
 $\chi_{c1}$  - 7x10-5 2x10-4  
 $\chi_{c2}$  2x10-3 8x10-4 7x10-5 3x10-4

• Harland-Lang, Khoze, Ryskin, Stirling 2010:

$$\chi_{c0}$$
 at LHC  $\sqrt{s} = 14$  TeV:

| decay                                 | BR                 | Deacy in 4π       |
|---------------------------------------|--------------------|-------------------|
| $\chi_{c0} \rightarrow \Pi \pi$       | $7x10^{-3}$        | $3.2x10^3$        |
| $\chi_{c0} \rightarrow K^+K^-$        | 6x10 <sup>-3</sup> | $2.7x10^3$        |
| $\chi_{c0} \rightarrow J/\Psi \gamma$ | 1x10 <sup>-2</sup> | $4.5 \times 10^3$ |
| $\chi_{c0} \rightarrow p\bar{p}$      | 2x10 <sup>-4</sup> | 90                |

$$\frac{d\sigma_{\text{excl}}}{dy} \Big|_{y=0} = 45 \text{ nb} \longrightarrow 4.5 \times 10^5 \,\chi_{c0} \text{ in } 10^6 \text{s}$$

- in  $10^6$  s there are  $90 \chi_{c0}$  proton-antiproton decays  $(4\pi)$
- Preliminary estimates: P. Ladron deGuevara et al:
- estimates of efficiency reconstruction
- PID cuts, solid angle ~ 32 %
- $\rightarrow \sim 30$  reconstructed  $\chi_{c0} \rightarrow p \bar{p}$  in central barrel
  - → detailed simulation studies ongoing

# The hunt for the odderon



- Diffractive J/Y production: contributions from

$$d\sigma/dy \mid_{y=0} \approx 0.9 \ nb \ (0.3-4 \ nb)$$

Interference of photon-pomeron and photon-odderon amplitudes



$$d\sigma \sim A\gamma (A_P + A_O)^2 d^N q$$
  
  $\sim (A_P^2 + 2Re(A_P A_O^*) + A_O^2) d^N q$ 

interference of C-even and C-odd amplitudes results in asymmetries of  $\pi^+\pi^-$  or  $K^+K^-$  pairs :

- → charge asymmetry relative to polar angle of  $\pi$ + (K+) in dipion (dikaon) rest frame
- → asymmetries in HERA kinematics estimated 10% 15%
- $\rightarrow$  how much are such asymmetries in pp @ LHC?

## Conclusions, outlook



- ALICE has unique opportunity to do soft diffractive physics @LHC
- Diffractive trigger defined by two rapidity gaps
- Neutral energy measurement at  $0^0$
- Tests of central exclusive formalism at low masses
- Phenomenology of Pomeron/Odderon
- Photon-Photon physics