

AIDA2020 Project Wp7 IMB-CNM Activities

S. Hidalgo, A. Doblas, D. Flores, M. Manna, A. Merlos, N. Moffat, S. Otero, G. Pellegrini, D. Quirion

Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona, Spain

CUU

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020 🔡 CSIC

Fabrication Processes

• LGAD

- Run 11748. AIDA2020 v1
 - 4", 35/50+300 μm thick Si-Si. 14 Wafers
 - N⁺-Layer do not overhang Multiplication Layer
 - High Leakage current due to a problem in the multiplication layer periphery
- Run 12916. AIDA2020 v2
 - 4", 50+300 μm thick Si-Si. 4 Wafers
 - N⁺-Layer overhang Multiplication Layer
 - Low Leakage current
- Runs 11486 & 13002. 6 inch Thin LGADs
 - 6", 50+1+300 μm thick SOI. 7 Wafers
 - 6", 55+525 μm thick EPI. 4 Wafers
- ATLAS/CMS Common Run
 - AIDA2020v2 design in 6 inch SOI & Epitaxial wafers
- 3D
 - Run 11119. **3D-SS**, RD53A, AIDA2020
 - 4", 150+200 μm thick Si-Si. 8 Wafers

LGAD. AIDA2020. Runs 11748 & 13002

LGAD. AIDA2020 v1. Run 11748

- LGADs for ATLAS & CMS Timing Layers
 - 4 inch, 35/50+300 μm thick Si-Si. 14 Wafers
 - N⁺-Layer do not overhang Multiplication Layer (do not overlap JTE diffusion)
 - We use three different implantation dose values for the multiplication area (2,3,8,9 low; 4,5,10,11 medium; 6,7,13,14 high)
 - Wafer 1 integrates PiN diodes only
 - Wafers 3,5,7,9,11,14 do not use temporary metal and they have been tested on-wafer using some single pad devices to evaluate the fabrication process quality
 - We have use temporary metal on wafers 1, 2, 4, 6, 8, 10, 12, 13, only
 - High Leakage current due to a problem in the multiplication layer periphery

Without Temporary Metal		
Wafer	Thickness	Dose
3	35 µm	Low
5		Med
7		High
9	50 µm	Low
11		Med
14		High

With Temporary	<u>/ Metal</u>

Wafer	Thickness	Dose
1	35 µm	PiN
2		Low
4		Med
6		High
8	50 µm	Low
10		Med
12		Med-High
13		High

LGAD. AIDA2020 v1. Run 11748

- LGAD have high leakage currents (≈mA) but pin diodes are working well (nA)
- Current is not generated in the bulk, all other parameters are OK (gain, breakdown voltage, capacitance, depletion voltage of the multiplication layer, surface current, etc.)
- High current due to a mistake in the N⁺ mask level design that was implemented in all devices (no in pins). The reason was to try to increase the JTE performance
- IFCA work show that leakage current decreases with irradiation and the detectors can be operated normally
- New N⁺ mask level design to avoid this problem

LGAD. AIDA2020 v1. Numerical Simulations

If we reduce the overlap between the N⁺ and JTE diffusions on the multiplication layer, the doping in that area might not be compensated, inducing a parallel p-type resistor that connect the anode with the cathode

LGAD. AIDA2020 v1. Numerical Simulations

IV LGAD Simulation

LGAD. AIDA2020 v1. Thermographic Measurements

Location of hot spots @ $V_{AC} = 20 V$

Amplitude image superimposed to average image

Salvador Hidalgo

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

LGAD. AIDA2020 v1. Thermographic Measurements

Location of hot spots @ $V_{AC} = 150 V$

Amplitude image superimposed to average image

LGAD. AIDA2020 v1. I-V Measurements. Irradiation

- LGAD have high leakage currents (≈mA) but pin diodes are working well (nA)
- Leakage current decreases with irradiation and the detectors can be operated normally (IFCA Santander)
- Originated at LGAD periphery (JTE structure)

LGAD. AIDA2020 v1. Samples Distribution

ATLAS Institutes

- Wafers Diced: 6.50 % of samples
- 105 samples/wafer: 630 total
- Samples distributed by Joern Lange
- ATLAS 5x5, 2x2 modules (1.3, 1.0)
- LGAD samples (1.3, 1.0)
- PiN samples (1.3, 1.0)

- CMS Institutes
 - Wafers Diced: 6.50 % of samples
 - Samples distributed by IFCA
 - CMS 4x24, 4x4, 4x2, 4x1 modules: 45
 - LGAD samples (1.3, 1.0): 100
 - PiN samples (1.3, 1.0): 31

LGAD. AIDA2020 v2. Run 12916

- LGADs for ATLAS & CMS Timing Layers
 - 4 inch, 50+300 μm thick Si-Si. 4 Wafers
 - N⁺-Layer overhang Multiplication Layer until the JTE end
 - We use only one implantation dose and energy value for the multiplication area (medium dose, low energy)
 - We have use temporary metal on all wafers
 - Wafers have been tested on-wafer using some single pad devices to evaluate the fabrication process quality
 - Low Leakage current
 - IV/CV measurements on wafer (preliminary)
 - 5x5 and 2x2 arrays are being measured (preliminary)

Salvador Hidalgo

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

LGAD. AIDA2020 v2. Electrical Characterization

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

LGAD. AIDA2020 v2. Electrical Characterization

LGAD. AIDA2020 v2. Electrical Characterization

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

LGAD. AIDA2020 v2. Run 12916

- Conclusions
 - Preliminary measurements in terms of I-V and C-V
 - Leakage current values are the expected (0.1-1 nA)
 - Voltage breakdown and full depletion close to high dose value (change in drive-in process)
 - Gain estimation shows a value around 15
- Future Work
 - Dice the devices and sent them to irradiation campaigns
 - TCT measurements: gain studies
 - Electrical characterization of 2x2 and 5x5 arrays
 - Wafers 2-4 (with Temporary Metal Layer)
 - Modules I(V) and C(V) Characterization
 - Yield

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

Runs 11486 & 13002. 6 inch Thin LGADs

- 1.3x1.3 mm² LGAD Pad Devices (Active Area)
- 6 inch, 50+1+300 μm thick SOI wafer
- 7 Wafers: 5 wafers available, 2 wafers broken (W4, W6)
- We use different Implantation Dose and Energy values for the multiplication area
- N⁺-Layer overhang Multiplication Layer until the JTE end (like AIDA2020 v2 design)
- Wafer mapping: 586 devices

Wafer	Dose (at/cm²)	Energy (keV)
1	Low	Low
2	Med	Low
3	High	Low
4	Med	Med
5	High	Med
6	Low	High
7	Med	High

🛞 AIDA 🚾 GAM 🏵 18

I-V on Wafer 2 (Med Dose - Low Energy)

Salvador Hidalgo

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

• Infra Red Laser TCT. Wafer 3. Gain: 10 @ 150V, 20 @ 250V

Salvador Hidalgo

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

🛞 AIDA²⁰²⁰ CAA 🍪 21

 Some devices have been already sent to irradiation campaigns

Institution / Research Centre	Wafer
IFAE (Barcelona)	2,3
CERN (Geneva)	2,3
SCIPP (Santa Cruz)	3
STFC RAL (Oxford)	3
IFCA (Santander) + CNA (Sevilla)	2,3,5

• CERN preliminary measurements (M. Moll group) shows that samples from this run do not show "Pop Corn" issue

Run 13002. 6" Thin LGAD v2. EPI Wafer. 6LG2

- Same mask set as Run 11486 (6LG1)
- 1.3x1.3 mm² LGAD Pad Devices (Active Area)
- 6 inch, 55+525 μm thick EPI wafer
- 4 Wafers. Same 6LG1 Technological Process
- We use three implantation dose and one energy value for the multiplication area (med, med/high, high)
- N⁺-Layer overhang Multiplication Layer until the JTE end (like AIDA2020 v2 design)
- Wafer mapping: 586 devices
- Run in Process (44/88 steps)

AIDA²⁰²⁰ Cnm (2) • 23

6" Thin LGAD v3. ATLAS/CMS Run. 6LG3

- New run using 6", 50+(1)+300 μm thick, SOI and Epi-Wafers
- Layout proposed by ATLAS-HGTD and CMS-ETL
- Timing detectors with Pad and Array designs
- Change standard Slim Edge to 500 μm (called SE5)
- 3 Inter-Pad Gaps: 37, 47, 57 μm (corresponding to JTE 5, 10, 15 μm), called IP37, IP47, IP57
- Same positions of large probe pads for common probe card between HPK+CNM
- 35-50 μm thick Si-Si wafers were purchased in January 2018 but the wafers haven't arrived by now (IceMosTech)
 - Expected delivery: Second quarter of 2020
- Work in progress. End of the fabrication process expected by the end of 2020?

🛞 AIDA 🔁 GAM 🛞 24

1x CMS_1.3x1.3_16x32_IP57
2x CMS_1.3x1.3_16x16_IP57
28x CMS_1.3x1.3_5x5xN_IP57
15x CMS_1.3x1.3_5x5_IP57
9x CMS_1.3x1.3_5x5_IP47
3x CMS_1.3x1.3_5x5_IP37
1x PiN_1.3x1.3_5x5_IP57/47/37
32x CMS_1.3x1.3_2x2_IP57/47
5x PiN_1.3x1.3_2x2_IP57/47
48x CMS_1.3x1.3_1x1_IP57/IP47
16x PiN_1.3x1.3_1x1_IP57/47

Expected Gain: 10 @ 150 V, 20 @ 250 V (6LG1, Wafer 3)

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

3D-SS. AIDA2020. RD53A. Run 11119

- Single Side process on Si-Si wafers (8)
 - 150 μm active thickness, 200 μm handle wafer, 120 μm n-column depth, 8 μm column diameter
 - Mask: CNM899
 - 9 RD53A 50x50 μm² (1-x)
 - 2 RD53A 25x100 μm² 1E (3-x)
 - 9 RD53A 25x100 μm² 2E (2-x)
- Diodes
 - 5-x 50x50 μm², 100x100 electrodes
 - 6-x 50x50 μm², 50x50 electrodes
 - 7-x 25x50 μm², 50x50 electrodes
 - 8-x 25x100 μm², 50x50 electrodes
 - 64 Test structures 3x3 matrix
- MOS
 - 9-x 3500x3500 μm²
 - Polysilicon Test structures

Salvador Hidalgo

CNM (2) 26

3D-SS. AIDA2020. RD53A. Run 11119

- I-V Measurements with temporary metal
 - Good yield for 50x50 μm² pixel sensors (~70%)
 - Breakdown takes place at high value voltages
 - Leakage current is below the ITk acceptance criteria
 - 2.5 μA/cm² for 50x50 μm² and 25x100 μm² (1E)
 - 25x100 μm² (2E) geometry has instead low yield
 - Small distance between p-columns and metal pad

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

3D-SS. AIDA2020. Run 11119. Distribution

AIDA2020-ATLAS

- Wafers 6, 8: Dicing, UBM at IZM; Flip-Chip at IFAE
- ATLAS bump-bonding market survey requirements

AIDA2020-CMS

- Wafers 3, 5, 7: Dicing, UBM and Flip-Chip at IZM
- Wafers 1, 2, 4 will be sent to the rest of CMS bump-bonding market survey candidates (one wafer for each candidate)

Thank you for your attention!

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020

AIDA²⁰²⁰ Cnm (29)

AIDA2020 Project Wp7 IMB-CNM Activities

S. Hidalgo, A. Doblas, D. Flores, M. Manna, A. Merlos, N. Moffat, S. Otero, G. Pellegrini, D. Quirion

Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona, Spain

CUU

AIDA-2020 Final Annual Meeting, Vidyo CERN, April 28th, 2020 🔡 CSIC