
Dr Christopher Jones
HSF Framework Group
29 April 2020

Multi-threaded Scheduling in CMS



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

CMS’s Threading Goals

Better scaling of system resources as core count increases
Number of workflow jobs does not have to increase as core count increases
Potential to use sites with lower available resources

More sharing between cores
Share infrequently updated memory

conditions
I/O buffers

Share file handles
Share network connections

Faster processing of individual Events is NOT a goal
CMS cares about total events/second for an entire workflow, not so much 1 job

A workflow processes millions of events over 10s of 1000s of jobs

2



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Threaded Design

Run multiple transitions concurrently
Event transitions are the most important
Number of allowed concurrent transitions of each type set at configuration time

Within one transition run multiple modules concurrently
Have to take into account module dependencies

Within one module be able to run multiple tasks concurrently

Intel’s Thread Building Blocks library used for all of the above
Break down work into tasks and TBB can run them in parallel

3



Date C Jones I Multi-threaded Scheduling in CMS

Double-click to edit

4

Processing an Event
Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

Output
Module

Analyzer

Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done



Date C Jones I Multi-threaded Scheduling in CMS

Double-click to edit

5

Processing an Event
Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

Output
Module

Analyzer

Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done



Date C Jones I Multi-threaded Scheduling in CMS

Double-click to edit

6

Processing an Event
Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

Output
Module

Analyzer

Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done



Date C Jones I Multi-threaded Scheduling in CMS

Double-click to edit

7

Processing an Event
Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

Output
Module

Analyzer

Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done



Date C Jones I Multi-threaded Scheduling in CMS

Double-click to edit

8

Processing an Event
Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

Output
Module

Analyzer

Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done



Date C Jones I Multi-threaded Scheduling in CMS

Double-click to edit

9

Processing an Event
Path

EndPath

EndPath

Path

Filter

Producer

Source Paths

Analyzer

Trigger
Results

Output
Module

Analyzer

Analyzer

Analyzer

Producer

Filter

Filter

Time

Event
Done



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Glossary

Paths
Events are filtered by Paths
Paths hold a list of Filters

Filters
Modules after a Filter on a Path only run if the Filter passes

Producers
Make data products used by other Modules
Run first time their data is requested

EndPaths
Hold modules that want to see all Events or want to see results of Paths

Modules
Filters, Producers, Analyzers, and OutputModules are all Modules
Modules can run concurrently

10



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Scheduling

No process wide scheduling is done
All decisions are done on each thread individually

Based on four items
TBB’s task scheduling
Prefetching
Module threading types
Serial task queues

11



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

TBB Task Model

Pre-declare how many threads should be used

For each thread, there is a work queue

task::spawn adds a task to the queue for the thread that called spawn

tasks are pulled from the work queue in Last In First Out order

task::enqueue puts tasks on a shared queue

If a queue is empty, the thread will
See if a task is on the shared queue and if so take the oldest one, else
Steal oldest task from another thread’s queue

A task can explicitly return a new task that is to be run next
Guaranteed to run on the same thread

12



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

TBB Task Model

Tasks are pulled in Last In First Out order

13

Threads

1
Queue

2
Queue

31

2



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

TBB Task Model

Tasks are pulled in Last In First Out order

14

Threads

1
Queue

2
Queue

31 2



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

TBB Task Model

Spawned tasks go into same queue as creating task

15

Threads

1
Queue

2
Queue

31 2
4 5

15



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

TBB Task Model

Spawned tasks go into same queue as creating task

16
16

Threads

1
Queue

2
Queue

31 2

4

5



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

TBB Task Model

Spawned tasks go into same queue as creating task

17
17

Threads

1
Queue

2
Queue

31

4

5



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

TBB Task Model

Spawned tasks go into same queue as creating task

18
18

Threads

1
Queue

2
Queue

31

4

5



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

TBB Task Model

An empty thread queue steals oldest task from another queue

19
19

Threads

1
Queue

2
Queue

4

51



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

TBB Task Model

An empty thread queue steals oldest task from another queue

20
20

Threads

1
Queue

2
Queue

4 5 1



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Data Prefetching

Data for modules are prefetched asynchronously
Done when framework decides a module should be run for that Event
Provides a large number of tasks for TBB to schedule
Module starts after all prefetches have finished

21



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Data Prefetching

Data for modules are prefetched asynchronously
Done when framework decides a module should be run for that Event
Provides a large number of tasks for TBB to schedule
Module starts after all prefetches have finished

21



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Data Prefetching

Data for modules are prefetched asynchronously
Done when framework decides a module should be run for that Event
Provides a large number of tasks for TBB to schedule
Module starts after all prefetches have finished

21



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Data Prefetching

Data for modules are prefetched asynchronously
Done when framework decides a module should be run for that Event
Provides a large number of tasks for TBB to schedule
Module starts after all prefetches have finished

21



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Data Prefetching

Data for modules are prefetched asynchronously
Done when framework decides a module should be run for that Event
Provides a large number of tasks for TBB to schedule
Module starts after all prefetches have finished

21



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Module Threading Types

Modules are implemented based on threading types

Re-entrant
Multiple events can simultaneously run the same instance of a module

Replicated
Each concurrent event has its own copy of a module
Since number of concurrent events is set at configuration the modules are made early

One
Only one instance of the module
Only one event at a time can interact with the module
Cross event scheduling handled by a serial task queue

22



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Serial Task Queue

A serial task queue guards a shared resource
Modules needing the resource have their to run task placed in the appropriate queue
When a task from the queue finishes, it automatically spawns the next task in the queue

23



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Serial Task Queue

A serial task queue guards a shared resource
Modules needing the resource have their to run task placed in the appropriate queue
When a task from the queue finishes, it automatically spawns the next task in the queue

23



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Serial Task Queue

A serial task queue guards a shared resource
Modules needing the resource have their to run task placed in the appropriate queue
When a task from the queue finishes, it automatically spawns the next task in the queue

23



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Serial Task Queue

A serial task queue guards a shared resource
Modules needing the resource have their to run task placed in the appropriate queue
When a task from the queue finishes, it automatically spawns the next task in the queue

23



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Serial Task Queue

A serial task queue guards a shared resource
Modules needing the resource have their to run task placed in the appropriate queue
When a task from the queue finishes, it automatically spawns the next task in the queue

23



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Processing Stalls

If had no shared resources, CMS’s threading design scales perfectly
If have as many threads as concurrent events
Each thread would always have a tbb task to run for a given thread
No cross thread communication needed

Sharing resource across concurrently running events can cause stalls
All reads from a ROOT file must be serialized
Writing to a ROOT output file must be serialized

NOTE: can write to different ROOT output files simultaneously
One modules are shared across events but are not thread-safe

Mitigate stalls by having many more scheduled tasks than threads
Running Paths/EndPaths concurrently creates many tasks
Prefetching data products creates many tasks
Having concurrent events creates many tasks
Using parallel algorithms within a module can create many tasks

24



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Example of Stall Mitigation

Simple job configuration
2 threads
2 concurrent events
2 One OutputModules (A and B) both on same EndPath

During event processing loop
Both threads put requests to run A and B into their respective serial task queues
The first thread to add a task to a serial task queue will have the task spawned to TBB
A task for both A and B will be available to TBB

Could be for the same event or for different events depending on exact timing of calls
Both tasks will be run

Either because they were spawned in different threads or one thread stole from the other
When a tasks finish, it will run the other task waiting in the queue
At all times both threads are busy

25



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Stall Mitigation Performance Measurement

Machine for testing
Westmere-EP L5640 CPU with 6 cores x 2 hyper-threads

Compared Reconstruction jobs
Old one-thread-per-event implementation which runs modules in a fixed order

used mutex to guard shared resources
Full system with number of threads == number of concurrent events
Full system with number of threads == 12 (machines max)

Reconstruction configuration summary
3 OutputModules
1780 other modules
21 Paths

NOTE: this measurement is from 2017 and CMSSW has had further improvements

26



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Throughput Comparisons

27

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Concurrent Events
0 2 4 6 8 10 12

12 threads
#threads=#concurrent events
Old implementation

Th
ro

ug
hp

ut
 R

el
at

iv
e 

to
 O

ld
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of Concurrent Events
0 2 4 6 8 10 12

12 threads/old
threads=events/old



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Throughput Comparisons

28

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Concurrent Events
0 2 4 6 8 10 12

12 threads
#threads=#concurrent events
Old implementation

Th
ro

ug
hp

ut
 R

el
at

iv
e 

to
 O

ld
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of Concurrent Events
0 2 4 6 8 10 12

12 threads/old
threads=events/old



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Throughput Comparisons

29

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Concurrent Events
0 2 4 6 8 10 12

12 threads
#threads=#concurrent events
Old implementation

Th
ro

ug
hp

ut
 R

el
at

iv
e 

to
 O

ld
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of Concurrent Events
0 2 4 6 8 10 12

12 threads/old
threads=events/old



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Stall Mitigation Findings

Stalls were solely caused by just one of the OutputModules
The one which takes longest per event

Full system’s scheduling allows stall mitigation
Framework can re-order the run order of the OutputModules
Many tasks available per thread allows threads to stay busy

Additional threads increase throughput
CMS has limited concurrency within an Event

about 1.6 threads per event is the maximum concurrency
limited because of module dependencies and module run time

30



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Reconstruction with 8 threads and 6 Concurrent Events

31



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Memory Utilization

High initial memory
~2 GB

Memory grows slowly w.r.t number of concurrent events
~150 MB/event

32

R
SS

 M
em

or
y 

(G
B)

0

1

2

3

4

Number of Concurrent Events
0 2 4 6 8 10 12



29/04/2020 C Jones I Multi-threaded Scheduling in CMS

Conclusions

CMS is happy with the threaded framework
Have used in production since beginning of LHC Run 2 (2015)
Used for all production workflows

online high level trigger farm, event generation, Geant simulation, and reconstruction
Typically use 8 threads per job

Number of concurrent events == number of threads
This limit is primarily set by the grid site’s batch slot configuration

The scheduling mechanism
Has very little overhead even when only using very fast running modules

Using longer running modules the overhead is negligible
Scales very well with number of threads

Only limited by the number of serial tasks queues in the job
The serial task queue around the Source is the ultimate limit at the moment

33


