

QCD@LHC-X 2020, online 2 September 2020

Status of SM Higgs measurements and searches for BSM Higgs

Giovanni Petrucciani (CERN) on behalf of the ATLAS and CMS Collaborations

New (Summer '20)

Disclaimers & outline

- There's by far too many recent SM measurements and BSM searches to be able to review all of them in a single talk
 - Some I will review very briefly or just advertise, and some I will skip (more information in the slides, backup, and linked documentation)
 - I will focus mostly on measurements, privileging importance over novelty
 - Only results with full LHC run 2 dataset

Cross sections (STXS, Differential)	Other topical measurements	Couplings, EFT, CP	BSM
γγ STXS & Diff.	$H \rightarrow \mu \mu$	Comb. к,	VBF H \rightarrow inv.
ZZ STXS & Diff.	$H \rightarrow Z\gamma$	EFT STXS bb, ZZ	$H_{BSM} \rightarrow ZZ$
WW Diff.	$VBFH \to WW$	EFT & AC ZZ	$H_{BSM} \rightarrow \gamma \gamma$
ττ STXS	ttH multilep.	CP ttH, H $ ightarrow$ gg	
bb STXS		$CP\:H\to\tau\tau\:decay$	
Comb STXS			

Simplified Template Cross Sections (STXS)

- Split Higgs production modes in gen-level bins in p_T , N(jets), m_{ii}
 - Assume within each bin SM kinematics is a good proxy for the true physics
 - Allow re-interpretation of results in different models (e.g. EFT) or with different assumptions (e.g. on theory uncertainties)

Simplified Template Cross Sections (STXS)

- Split Higgs production modes in gen-level bins in p_T , N(jet), m_{ii}
 - Assume within each bin SM kinematics is a good proxy for the true physics
 - Allow re-interpretation of results in different models (e.g. EFT) or with different assumptions (e.g. on theory uncertainties)

Giovanni Petrucciani (CERN)

New, ICHEP 2020

QCD@LHC-X 2020, 2 Sept 2020

ATLAS-CONF-2020-026 CMS PAS HIG-19-015

category

- $H \rightarrow \gamma \gamma$ very well suited to STXS measurements:
 - yields, efficiency and S/B across whole phase space
 - robust background estimation from $m(\gamma\gamma)$
- Full LHC Run 2 dataset, targeting all productions: ggH, VBF, WH, ZH, ttH, tH
 - including first ttH measurements differential in $p_T(H)$
- Similar overall strategy deployed:
 - 1. First level categorization associated to STXS bins, often employing MVAs to improve classification accuracy.
 - 2. MVAs to splitting in subcategories to improve S/B,
 - 3. Signal extraction by fitting $m(\gamma\gamma)$ shape in all categories.
 - 4. Fit together STXS bins that can't be resolved individually, at times merging also the associated categories.

STXS stage 1.2 process (reduced)

Giovanni Petrucciani (CERN)

New, ICHEP 2020

ATLAS-CONF-2020-026 CMS PAS HIG-19-015

$H \rightarrow \gamma \gamma$ STXS categorization

- Multiclass BDT trained on all STXS bins (44 classes), using full event information (photons, jets, b-tags, leptons, tagged top quarks, ...)
 - Compute per event probabilities z_i for each class ($\Sigma z_i = 1$)
 - Assign events to category with max weighted probability w_i·z_i
 - Weights w_i optimized to minimize the determinant of the covariance matrix of the fit

- Groups of categories designed for each production mode
 - Multiclass BDT for VBF-like events (qqH vs ggH vs background)
 - Multiclass BDT for ggH SXTS bins except p_T>200 GeV & VBF-like ones
 - Dedicated MVAs also in other categories, e.g. tHq vs ttH
- Event assigned to the highest priority category that accepts it
 - tHq(lep), ttH(lep), ZH(2l), WH(1l),
 VH(ol), ttH(had), VBF, VH(had), ggH

ATLAS-CONF-2020-026 CMS PAS HIG-19-015

$H \rightarrow \gamma \gamma$ STXS stage o results

CERN

 μ (WH) & μ (ZH) anti-correlated, $\rho = -0.41$ When using the same parameter for both, the fit gives μ (VH) = 1.3 ± 0.3 and overall $p_{SM} = 50\%$

7

CERN

$H \rightarrow \gamma \gamma$ STXS results, ATLAS (27 params)

CMS PAS HIG-19-015

CERN

$H \rightarrow \gamma \gamma$ STXS results, CMS (24 params)

New, ICHEP 2020

ATLAS-CONF-2019-029

$H \rightarrow \gamma \gamma$ differential & fiducial

• First H $\rightarrow \gamma \gamma$ differential result on full run 2 data from ATLAS

Jul 2019

Giovanni Petrucciani (CERN)

- Focus on few key distributions: $p_T(H)$, y(H), N(jets), $p_T(j1)$, m(jj), $\Delta \phi(jj)$
- Unfolding via bin-by-bin corrections.
 Matrix unfolding used as cross-check
- For reinterpretation, covariance matrix across bins of different distributions is provided (extracted from bootstrap)
- Fiducial cross section:

 $\sigma_{fid} = 65.2 \pm 4.5^{(stat.)} \pm 5.6^{(syst.)} \pm 0.3^{(th.)} fb$ SM prediction 63.6 ± 3.3 fb

QCD@LHC-X 2020, 2 Sept 2020 arXiv:2004.03447 (EPJC) CMS PAS HIG-19-001

 $H \rightarrow ZZ: STXS$

- Very clean final state but small event yields:
 - Must group STXS bins to improve sensitivity, especially for VH & ttH processes
- Different analysis strategies used:
 - ATLAS: cut-based categories, fit to DNN discriminants
 - CMS: cuts & Matrix Element for categories, 2D fit to m(4l) and ME discrim.
- Other highlights
 - CMS: Matrix element to tag VBF 1-jet events
 - ATLAS: ZZ + 0/1/2 jets & tXX bkgs freely floating

CERN

arXiv:2004.03447 (EPJC) CMS PAS HIG-19-001

$H \rightarrow ZZ STXS stage o results$

QCD@LHC-X 2020, 2 Sept 2020

arXiv:2004.03447 (EPJC) CMS PAS HIG-19-001

$H \rightarrow ZZ STXS stage 1.x results$

April 2020

Giovanni Petrucciani (CERN)

CERN

arXiv:2004.03969 (EPJC) CMS PAS HIG-19-001

$H \rightarrow ZZ$: differential & fiducial

Most recent result from ATLAS:

April 2020

Giovanni Petrucciani (CERN)

- extensive set of 1D and 2D distributions
- ZZ background fitted in situ bin by bin
- comparisons to many different MC codes (e.g. RadISH, NNLOJET, Prophecy4f, HTo4l)
- Also older result from CMS with more limited set of variables & MC codes
- Fiducial cross sections:

Measure	ed ± stat ± syst [fb]	SM prediction [fb]
ATLAS	3.18 ±0.31 ± 0.11 (10%)	3.41 ± 0.18
CMS	$2.73_{-0.22}^{+0.23} \begin{array}{c} +0.24 \\ -0.29 \end{array} $ (11%)	2.76 ± 0.14

 Differential distribution in p_T(H) and number of jets

Giovanni Petrucciani (CERN)

 Regularization used for p_T(H), strength derived minimizing global correlation on Asimov

Sept 2019

- Likelihood-based unfolding (no Gaussian approximations)
- STXS definitions used for p_T(H) and N(jets)
- Fiducial cross section:

 $\sigma_{fid} = 86.5 \pm 4.1^{(stat)} \pm 6.3^{(exp)} \pm 5.8^{(th)} \text{ fb} (11\%)$ SM prediction: 82.5 ± 4.2 fb

15

New, ICHEP 2020 QCD@LHO

QCD@LHC-X 2020, 2 Sept 2020

CMS PAS HIG-19-010

 $H \rightarrow \tau \tau$: STXS

Giovanni Petrucciani (CERN)

- Complement $H \rightarrow \gamma \gamma$ and 4ℓ in regions where the σ_{SM} is small and S/B good: – High p_T gluon-fusion, high m(jj) VBF
- Analysis highlights:
 - State of the art τ ID: DNN using PF candidates
 - Dominant backgrounds estimated from data: genuine ττ bkg via embedding, reducible bkg via fake rate method
- Traditional cut-based strategy:
 - Split in $\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$ and $o j / VBF / \ge 1 j$
 - Fit $m_{\tau\tau}$ distribution in bins of $p_T(H)$ or m(jj)

CERN

$H \rightarrow \tau \tau$ STXS results

QCD@LHC-X 2020, 2 Sept 2020

Giovanni Petrucciani (CERN)

$VH, H \rightarrow bb$

Two analyses on full run 2 dataset

April 2020

- Traditional analysis with anti-k_T(R=0.4) jets, using MVA methods.
 - Similar strategy as H → bb observation paper but with improvements in objects, MVA, control regions, background modelling ...
- Boosted analysis targeting $p_T(V) > 250$ GeV
 - use large radius jets (anti-k_T, R=1.0) with substructure info, and track jets for b-tag
 - cut-based categorization, with groomed jet mass as final discriminant

April 2020

QCD@LHC-X 2020, 2 Sept 2020

arXiv:2007.02873 (sub. to EPJC) arXiv:2008.02508 (sub. to PLB)

 $VH, H \rightarrow bb$

Giovanni Petrucciani (CERN)

CERN

Boosted analysis

QCD@LHC-X 2020, 2 Sept 2020

VH, $H \rightarrow bb$: STXS results

April 2020

Giovanni Petrucciani (CERN)

CERN

Resolved analysis Boosted analysis extra $p_T(V)$ bin at 400 GeV added stage 1.2 STXS for $qq \rightarrow VH$ $\sigma_{ m i} imes B_{ m bb}^{ m H} imes B_{ m lep}^{ m V}$ [fb] $B_{ m bb}^{ m H} imes B_{ m lep}^{ m V}$ [fb] 12**⊢ATLAS** VH, H \rightarrow bb, V \rightarrow leptons cross-sections ATLAS Boosted VH, H \rightarrow bb, V \rightarrow leptons - Stat. unc. • Observed — Tot. unc. -Stat. unc. • Observed — Tot. unc. _**√**s=13 TeV, 139 fb⁻¹ √s=13 TeV, 139 fb⁻¹ 10 10³ Expected Theo. unc. Expected Theo. unc. 8 V = WV = ZV = WV = Z6 10² × б 2 10 Т Ratio to SM Ratio to SM 1.5 0.5 250 ~ p^{W,t} ~ 400 GeV [₽] ^{₽^{2,t} ⁷ ⁴00 GeV} 75 ~ p^{2,t} 7 ~ 150 GeV 250 < p^{Z,t} 7 < 400 GeV 150 ~ p^{W,t} 7 ~ 250 GeV , 7^{₩,t} 7²⁵⁰ GeV P^{W,t} T → 400 GeV P^{Z,t} ^{pZ,t}→ 250 GeV 150 < p²/₇ < 250 GeV

New, ICHEP 2020 QCD@LHC-X 2020, 2 Sept 2020

Combined STXS

Giovanni Petrucciani (CERN)

- Including full Run 2 $\gamma\gamma$, ZZ, VH_{bb}
- $H \rightarrow ZZ^*$ taken as reference for defining the cross sections - Fit also B_{yy}/B_{ZZ*} and B_{bb}/B_{ZZ*}
- Measure 29 STXS bins:
 - Merging mainly 2-jet vs 3-jet VBF, 0-jet vs 1-jet VH, and few other bins in $p_{T}(H)$ or $p_{T}(Z)$
- Uncertainties in 15-100% range
 - except tH (300%), ggH p_T > 450 (150%), and one qqH m_{ii} bin (150%)

-0.28 (-0.25 Total Stat. Svst. $\begin{array}{c} +0.22 \\ -0.20 \\ +0.15 \end{array} \begin{pmatrix} +0.19 \\ -0.18 \\ +0.13 \\ +0.08 \\ +0.08 \\ \end{array} \begin{array}{c} +0.10 \\ -0.09 \\ +0.08 \\ +0.08 \\ \end{array}$ -0.14 (-0.12, +0.31 (+0.28-0.30 (-0.27, -0.07) ±0.13) 0.31 +0.13 +0.28-0.10) -0.27 0.41 -0.40'-0.39+0.39 -0.32 0.83 +0.73-0.76 -0.69' +0.37 +0.15 -0.12) -0.36 -0.33, +0.56 -0.49 +0.52 +0.20 -0.16) -0.46' +1.33 +0.55 +0.99 --0.89 (^{+0.95} __0.84, 1.00 ±0.29) +1.66+1.54 +0.62 -1.52 -1.45 -0.47) $\begin{array}{c} -1.52 & (-1.45) \\ +0.83 & (+0.79) \\ -0.73 & (-0.69) \\ +0.64 & (+0.59) \\ -0.56 & (-0.52) \end{array}$ +0.24 -0.21) (^{+0.59} _-0.52, +0.26 -0.21 +0.34 -0.29 +0.44 (+0.29 +0.19 (-0.26, -0.14) +0.41 +0.18 $\begin{array}{ccccc} +1.18 & +1.16 & +0.22 \\ -1.02 & (-1.02' & -0.13) \\ +1.01 & (+0.99 & +0.20) \\ -0.82 & (-0.81' & -0.12) \\ +0.93 & (+0.83 & +0.42) \\ -0.72 & (-0.65' & -0.32) \\ -0.72 & (-0.65' & -0.32) \end{array}$ +0.71+0.34 $\begin{array}{c} +0.74 \\ -0.82 \\ +0.77 \\ -0.77 \\ -0.52 \end{array} \begin{pmatrix} +0.54 \\ -0.57 \\ +0.70 \\ -0.52 \\ -0.52 \\ -0.21 \end{pmatrix} + \begin{array}{c} +0.50 \\ -0.59 \\ +0.70 \\ -0.21 \\ -0.21 \\ -0.21 \end{array}$ +0.81+0.41+0.77 (+0.76 -0.64 (-0.64, +0.51 (+0.51 +0.13 -0.08) +0.08 -0.05 $60 \le p_{-}^{H} < 120 \text{ GeV}$ $^{+0.51}_{-0.43}$ ($^{+0.51}_{-0.43}$, $^{+0.60}_{-0.51}$ ($^{+0.59}_{-0.50}$, $t\bar{t}H \times B_{77}$ +0.14 -0.10) $120 \le p_{\tau}^{H} < 200 \text{ GeV}$ +0.52 $p_{-}^{H} \geq 200 \text{ GeV}$ $tH \times B_{ZZ^*}$ -2.44, -0.63) -2 -6 Parameter normalized to SM value

Total Stat. Syst.

+0.14 , +0.12 +0.07

-0.12 (-0.11' -0.06 +0.57 , +0.48 +0.30

Giovanni Petrucciani (CERN)

Topical measurements

QCD@LHC-X 2020, 2 Sept 2020

arXiv:2007.07830 (sub. to PLB) CMS PAS HIG-19-006

 $H \rightarrow \mu \mu$

Giovanni Petrucciani (CERN)

 Most promising channel to test couplings to 2nd generation fermions

New, ICHEP 2020

- $BR_{SM}(H \rightarrow \mu\mu) \sim 2.2 \times 10^{-4}$, and large irreducible DY $\rightarrow \mu\mu$ background $S/B \sim 0.1\%$ for inclusive events at 125 GeV
- Strategies to increase sensitivity:
 - Improve $\sigma(m_{\mu\mu})$ with FSR recovery, and constraining tracks to beam line (CMS only)
 - Categorization & MVAs to select events at high S/B, e.g. from VBF, VH, ttH
 - More advanced signal extraction method

$H \rightarrow \mu\mu$ signal extraction

- The background is dominated by very well known DY $\to \mu\mu.$ Can rely on that to improve the sensitivity of the analysis.
- 1. Estimate bkg in each category as product of a common fixed core pdf and an empirical pdf
 - Can achieve good fit quality and acceptable bias with a reduced number of degrees of freedom
 - Used by ATLAS in all categories.
 (very similar approach used also by CMS in the ggH categories)

Giovanni Petrucciani (CERN) New, ICHEP 2020

QCD@LHC-X 2020, 2 Sept 2020

arXiv:2007.07830 (sub. to PLB) CMS PAS HIG-19-006

$H \rightarrow \mu \mu$ signal extraction

- 2. MC template-based analysis, including $m(\mu\mu)$ in the MVA.
 - Bkg at high S/B constrained by data at lower S/B bins and $m_{\mu\mu}$ sideband (fixing $m_{\mu\mu} = m_{H}$ when evaluating the MVA there)
 - Requires good MC modelling: theory (e.g. parton shower) and experiment (JEC, pileup). Rely on past VBF Z experience.
 - Used by CMS for VBF channel, gain in sensitivity ~20%

Giovanni Petrucciani (CERN)

CERN

arXiv:2007.07830 (sub. to PLB) CMS PAS HIG-19-006

CERN

Signal strength: $\mu = 1.2 \pm 0.6$ Significance: 2.0 σ (1.7 σ expected)

Signal strength: $\mu = 1.2 \pm 0.4$ Significance:3.00 (2.50 expected)

Giovanni Petrucciani (CERN)

CERN

New, ICHEP 2020

arXiv:2007.07830 (sub. to PLB) CMS PAS HIG-19-006

 $H \rightarrow Z \gamma$

Giovanni Petrucciani (CERN)

 SU(2)_L symmetry ties together the HWW, HZZ, Hγγ, HZγ interactions

May 2020

- If heavy new physics respects SU(2)_L, correlated effects across the four
- BR(H \rightarrow Z $\gamma \rightarrow \ell \ell \gamma$) = 0.5 · 10⁻⁴
 - Similar BR to H \rightarrow 4 ℓ , but larger background from Z γ production
- As in $H \to \mu \mu$, key ingredients are:
 - Improve signal mass resolution: FSR recovery, kinematic refit of $Z \rightarrow \ell \ell$
 - Improve S/B via categorization: BDT targeting VBF production; $p_{\rm T}$ and $p_{\rm Tt}$

New, ICHEP 2020 QCD@LHG

QCD@LHC-X 2020, 2 Sept 2020

$\mathsf{VBF}\:\mathsf{H}\to\mathsf{WW}$

Giovanni Petrucciani (CERN)

- Dedicated analysis to probe for VBF

 Using only the cleanest eµ final state
- Use DNN to discriminate the VBF signal from the backgrounds
 - Inputs are 15 kinematic variables built from leptons, jets, E^{mis}
 - Best S/B ever achieved in $H \rightarrow WW$?
- Measure $\sigma \times BR$ for VBF H \rightarrow WW:

 Obs. \pm stat. \pm syst.
 SM prediction

 $0.85 \pm 0.10^{+0.17}_{-0.13}$ pb
 0.81 ± 0.02 pb

 Significance: 7.00 (6.20 expected)

QCD@LHC-X 2020, 2 Sept 2020

ttH & tH multilepton

- Extended 80fb⁻¹ multilepton analysis to also target tH
 - use multiclass DNN to separate ttH, tH and backgrounds in 2lss, $2lss + 1\tau_h$, 3l categories.

ttW and ttZ fitted from data

 Improved MC for ttW adding α_{FW}^3 and $\alpha_s \cdot \alpha_{FW}^3$ contributions

Signal strengths		Bkg norm factors		
ttH	0.92 ^{+0.26} _{-0.23}	ttW 1.42 ± 0.21		
tH	5-7 ^{+4.1} -4.0	ttZ 1.03 ± 0.14		
Significance for ttH: 4.70 (5.20 expec				

Giovanni Petrucciani (CERN)

Couplings, EET interpretations &

EFT interpretations & CP studies

ATLAS-CONF-2020-027 CMS PAS HIG-19-005

Couplings in k framework

New, ICHEP 2020

- Combinations are a moving target. Current state of the art:
 - ATLAS: full run 2 $\gamma\gamma$, ZZ, VHbb, $\mu\mu$, invis. (+ all other channels at 36 fb⁻¹)
 - CMS: full run 2 ZZ, and 80 fb⁻¹ $\gamma\gamma$, $\tau\tau$, VHbb, ttH (+ WW, $\mu\mu$, ... at 36 fb⁻¹)

CERN

QCD@LHC-X 2020, 2 Sept 2020

VH, $H \rightarrow bb$: SMEFT interpretation

- STXS yields parameterized at LO in Warsaw basis using SMEFTsim
 - Acceptance effects small (10-20%), neglected in interpretation
- Set limits on individual parameters, and 4-5 eigenvectors from perform principal component decomposition of the full covariance

$H \rightarrow 4\ell$: SMEFT interpretation

• STXS yields parameterized at LO in Warsaw basis using SMEFTsim

QCD@LHC-X 2020, 2 Sept 2020

- Acceptance effects are important, e.g. from $m_{\ell\ell}$ cuts: estimated at particlelevel and parameterized as function of c_{HW} , c_{HB} , c_{HWB} or \tilde{c}_{HW} , \tilde{c}_{HB} , \tilde{c}_{HWB}
- Set limits on 1-2 parameters at a time

April 2020

Giovanni Petrucciani (CERN)

$H \rightarrow 4\ell$: SMEFT interpretation

- STXS yields parameterized at LO in Warsaw basis using SMEFTsim
 - Acceptance effects are important, e.g. from $m_{\ell\ell}$ cuts: estimated at particlelevel and parameterized as function of c_{HW} , c_{HB} , c_{HWB} or \tilde{c}_{HW} , \tilde{c}_{HB} , \tilde{c}_{HWB}
- Set limits on 1-2 parameters at a time

April 2020

Giovanni Petrucciani (CERN)

New, ICHEP 2020

QCD@LHC-X 2020, 2 Sept 2020

$H \rightarrow 4\ell$: AC & EFT analysis

- Dedicated analyses for anomalous couplings, separately to probe HVV and Hff+Hgg couplings

 Including SMEFT interpretation in the Higgs basis
- Higgs production modes categories (~ STXS stage o), and them multi-dimensional binning in discriminators:
 - D_{bkg} against qqZZ, using $m_{4\ell}$ & Matrix Element
 - Discr. for different AC hypotheses from ME / MVA (for ttH)
 - Up to 7 dimensions in VH & VBF categories
- Signal modelled as combination of templates
 - Generated full-simulation of SM and some AC benchmarks
 - Use per-event matrix element reweighting to create more

$H \rightarrow 4\ell$: AC & EFT analysis

- SMEFT result for HVV analysis, fitting 4 coefficients simultaneously – $c_{gg\&} \tilde{c}_{gg}$ included and profiled away; no ttH category \rightarrow insensitive to κ_t , $\tilde{\kappa}_t$
 - $-c_{\gamma\gamma} \& c_{Z\gamma}$ set to zero, assuming tightly constrained by BR($\gamma\gamma$), BR($Z\gamma$)

Coupling	Observed	Expected	Observed correlation				
δc_z	$-0.25\substack{+0.27\\-0.07}$	$0.00\substack{+0.10 \\ -0.28}$	1				
\mathcal{C}_{ZZ}	$0.03\substack{+0.10 \\ -0.10}$	$0.00\substack{+0.22\\-0.16}$	+0.144	1			
$C_{Z\square}$	$-0.03\substack{+0.04\\-0.04}$	$0.00\substack{+0.06\\-0.09}$	-0.186	-0.847	1		
${ ilde {\cal C}}_{ZZ}$	$-0.11\substack{+0.30\\-0.31}$	$0.00\substack{+0.63\\-0.63}$	+0.077	-0.016	+0.009	1	

Approx translation to Warsaw basis for comparison:

 $\delta c_Z = 0.2 \rightarrow c_{H\Box} = 3.3$; $c_{ZZ} = 0.2 \rightarrow c_{HW} = c_{HB} = 0.45$ (and same for CP-odd)

PRL 125 (2020) 6, 061801 PRL 125 (2020) 6, 061802

CP: ttH & tH with $H \rightarrow \gamma \gamma$

Analysis strategy:

- Build MVA discriminator for CP-even vs CP-odd top quark couplings, for ttH (CMS) or ttH+tH (ATLAS)
- Categorize events in CP MVA bins and Sig vs Bkg MVA bins
- Fit $m_{\gamma\gamma}$ in all categories

Giovanni Petrucciani (CERN)

PRL 125 (2020) 6, 061801 PRL 125 (2020) 6, 061802

CP: ttH & tH with $H \rightarrow \gamma \gamma$

Constrain CP mixing angle or CP-odd fraction of coupling

95%CL limit: $|\alpha| < 43^{\circ}$ ($|f_{CP}| < 0.47$) Pure CP-odd excluded at 3.9 σ

95%CL limit: $|f_{CP}| < 0.67 (|\alpha| < 55^{\circ})$ Pure CP-odd excluded at 3.2 σ

Giovanni Petrucciani (CERN) New, ICHEP 2020

41

CP: τ decays

Physics textbook analysis strategy:

- Select $H \rightarrow \tau_h \tau_h$ or $\mu \tau_h$, with τ_h decays to π^{\pm} , $\rho^{\pm}(\pi^{\pm}\pi^{\circ})$, $a_1^{\pm}(\pi^{\pm}\pi^{\circ}\pi^{\circ})$, $a_1^{\pm}(\pi^{\pm}\pi^{-})$
- For each τ reconstruct a decay plane
 - For 1-prong decays (μ^{\pm} , π^{\pm}), use the track impact parameter vector and momentum to build the plane
- Use the distribution of the angle ϕ_{CP} between the two τ decay planes

CP: τ decays

Giovanni Petrucciani (CERN)

Experimental aspects:

- Dedicated τ ID to tag decay modes

New, ICHEP 2020

- Multiclass MVA to separate $H \rightarrow \tau \tau$ sig. vs two main bkgs: genuine $[Z \rightarrow] \tau \tau$ events & reducible (jet $\rightarrow \tau_h$)
- φ_{CP} binned in slices of MVA signal score
 separately for each decay mode
- Background estimation as STXS H $\rightarrow \tau\tau$: τ embedding and fake rate

42

QCD@LHC-X 2020, 2 Sept 2020

CP: τ decays

• Most sensitive final states: $\mu\rho$, $\rho\rho$, $\pi\rho$

- Data prefers the CP-even hypothesis:
 - 95% CL limit $|\phi_{\tau\tau}| < 36^{\circ} (|f_{CP}| < 0.34)$
 - CP-odd excluded at 3.2 σ

BSM

VBF $H \rightarrow invisible$

April 2020

Giovanni Petrucciani (CERN)

- Search for Higgs boson decays to Dark Matter ($m_{DM} < m_{H} / 2$)
- VBF offers the best balance of cross section & purity
- Dominant backgrounds from
 - $Z \rightarrow \nu \nu$ and $W \rightarrow \ell \nu$ (with lost ℓ)
 - Estimated from simultaneous fit using CRs of $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$
- Sets world's best upper limit:
 BR(H→inv) < 0.13 (exp. 0.13)

Also older 36 fb⁻¹ + Run 1 combinations from CMS [PLB 793 (2019) 520] and ATLAS [PRL 122 (2019) 231801] BR(H \rightarrow invis) upper limits: CMS 0.19 (expected 0.15), ATLAS 0.26 (expected 0.17)

Giovanni Petrucciani (CERN) New, ICHEP 2020

QCD@LHC-X 2020, 2 Sept 2020

 $H_{BSM} \rightarrow \gamma \gamma$

- Search for a generic spin-0 or spin-2 resonance decaying into a photon pair
- Inclusive analysis, no categorization
 - Background modelled with analytic functions as in H $\rightarrow \gamma\gamma$
 - Probe both NWA and Γ/m up to 10%
- Upper limits on $\sigma \times BR$ in 10 0.02 fb
 - Largest local excess 3.3 σ at 684 GeV, Global significance 1.3 σ

Giovanni Petrucciani (CERN)

 $H_{BSM} \rightarrow ZZ$

- Exploit both 4l and 2l2v final states to increase reach at high mass
- Consider both Narrow Width Approx. and Γ/m = 1%, 5%, 10%, 15% benchmarks

 Including interference H₁₂₅ - H_{BSM} - ggZZ bkg
- $H \rightarrow 4\ell$ strategy
 - Use NN classifier trained against ZZ bkg to define high purity VBF and ggH categories
 - m(4l) used as final discrim. variable in fit
- $H \rightarrow 2\ell 2\nu$ strategy
 - Cut-based categorization for ggH & VBF
 - Transverse mass $m_{\rm T}$ used for fitting\$
- Set limits on $\sigma \times BR$ in 200–2 fb range
 - And interpret them in 2HDM benchmarks

A lot more that I didn't describe

all using full LHC run 2 data!

ATLAS

 $\frac{VBF + \gamma H \rightarrow bb [new!]}{H^{+}_{BSM} \rightarrow tb [new!]}$ $\frac{H^{+}_{BSM} \rightarrow tb [new!]}{HH \rightarrow bb WW}$ $\frac{VBF HH \rightarrow 4b}{H \rightarrow Za \rightarrow \ell\ell jet}$ $\frac{H \rightarrow ZZ mass}{MSSM H \rightarrow \tau\tau}$ $\frac{H \rightarrow e\mu (LFV), ee}{H \rightarrow e\mu (LFV), ee}$

 $\frac{HH \rightarrow bb \ 4\ell \text{ [new!]}}{ZH, H \rightarrow invis} \text{ [new!]}$ $\frac{H \rightarrow \gamma + invis}{H \rightarrow Z_{(D)}Z_{D} \rightarrow 4\ell}$ $\frac{H \rightarrow Z \ \rho, Z \ \varphi}{ggH, H \rightarrow bb}$

(1-2 slides in backup for most of them)

All CMS Higgs results: papers, preliminary results

CMS

Wealth of Higgs boson results from full LHC run 2 dataset:

- STXS and differential measurements with many bins. ttH differential measurements, and improved tH constraints.
- Fiducial cross sections at 10% precision, and κ's at 10% or better, EFT interpretations and dedicated EFT analyses
- First evidence for 2nd generation fermion couplings, and first bounds on CP violation in 3rd gen. fermion couplings

And a lot is still to come...

Giovanni Petrucciani (CERN)

END

QCD@LHC-X 2020, 2 Sept 2020

Bonus (things I didn't cover)

Including older slides from "HH, Rare & BSM" talk at LHCP 2020

Giovanni Petrucciani (CERN) New, ICHEP 2020

QCD@LHC-X 2020, 2 Sept 2020

CMS PAS HIG-20-004

CMS

137 fb⁻¹ (13 TeV)

 $HH \rightarrow bb 4\ell$

- Based on $H \rightarrow 4\ell$ analysis, requiring 115 < m(4 ℓ) < 135
- Make $H \rightarrow bb$ candidate
 - $p_T(jet) > 20 \text{ GeV}, |\eta| < 2.4$
 - If > 2 jets, pick the two with highest b-tag discriminator
- Use BDT to separate HH from backgrounds (H, ZZ, ttV)
 - Most discriminant variables: jet b-tag values, m(jj), ΔR(HH)
- Set limits $\sigma_{\rm HH}$ < 30×SM and –9 < κ_{λ} < 14 at 95% CL

 $gg \rightarrow ZZ \rightarrow 4I$ $q\bar{q} \rightarrow ZZ \rightarrow 4I$

ZH, $H \rightarrow invisible$

- Interpretation of $Z_{\ell\ell}$ + MET Dark matter search
- Dominant bkg are WZ and ZZ, from data in 3l and 4l CRs
- Set 95% CL upper limit BR($H \rightarrow inv$) < 29% (expected: 25%)

Giovanni Petrucciani (CERN) New, June 2020 QCD@LHC-X 2020, 2 Sept 2020

54

VBF + γ , H \rightarrow bb

- Look for VBF $H \rightarrow bb$ with a hard photon radiation:
 - Suppress QCD background
 - Provide handle to trigger events
 - Select only WW fusion (ZZ fusion suppressed by ISR-FSR interference)
- BDT against non-resonant bbyjj
 - Trained on LO MC reweighted to match data in mass sidebands
- Fit m(bb) in BDT categories $-\mu = 1.3 \pm 1.0$ (significance 1.3 σ)

g QQQQQQ

g Q00000Q

55

 $H^+_{BSM} \rightarrow tb search$

Giovanni Petrucciani (CERN)

- Look for tbH⁺ \rightarrow ttbb production
 - Dominant production and decay mode in MSSM at low tan(β)
- Select the ℓ + jets final state, main background tt + (b-)jets
 - data/MC corrections derived for tt vs N_{iets} and H_T in events with = 2 b-jets
 - tt + \geq 1 b & tt \geq 1 c normalizations kept freely floating in the fit
- DNN parameterized on H⁺ mass
 - Single DNN training with all masses
 - Signal extraction for each mass point separately from DNN output shape

m_{H⁺} [GeV]

Giovanni Petrucciani (CERN)

56

$H \rightarrow \gamma \gamma$ differential: SMEFT interpretation

- Likelihood built from product five 1D distributions p_T^{H} , N_{jets} , $p_T^{j_1}$, m_{jj} , $\Delta \phi_{jj}$ and their covariance matrix
- Signal yields per fiducial bin derived from SMEFTsim
 - LO ratio of SMEFT/SM yields applied on top of SM prediction
 - Keeping only terms linear in $1/\Lambda^2$
- Warsaw basis, fitting one operators at a time
- BR(γγ) SMEFT parametrization from <u>arXiv:1906.06949</u>

Parameter value

ERN

Higgs boson self-coupling

• An essential component of electroweak symmetry breaking

HH production in the SM: gluon fusion

• Dominant HH production mode in the SM is gluon fusion, driven by on self-coupling λ and Higgs-top couplings λ_{t} $-\sigma_{SM}(ggHH) = 31 \text{ fb } [~~1/1500 \text{ of } \sigma(ggH)!]$

[PLB 732 (2014) 142-149

2

3

SM

HH production: vector boson fusion

- VBF is the second production mode, with σ_{SM} = 1.72 fb ~1/20 of ggHH, ~1/2000 of VBF H
- Receives contributions from self-coupling HHH, HVV coupling (κ_ν, well measured in single Higgs), and HHVV quartic vertex (κ_{2ν}).
 - $\kappa_{2V} = \kappa_{V}^{2}$ if H is part of a SU(2)_L doublet, as in the SM or the SMEFT.
 - Otherwise, large increase in σ_{VBF} possible: $V_L V_L \rightarrow H H$ would violate unitary

Phys. Lett. B 801 (2020) 135145

Aug 2019

- First HH \rightarrow bb $\ell \nu \ell \nu$ analysis at ATLAS
- Multiclass DNN to separate HH from 3 main backgrounds: tt, Z(ll), Z(ττ)
 - Inputs are individual leptons, jets, E_T^{miss} , high-level variables (e.g. $\Delta R_{\ell\ell}$, $m_{T_2}^{bb}$)
 - Output $d_{HH} := \ln(p_{HH} / \Sigma p_{bkg})$
- Signal regions defined by d_{HH} cuts
- ×8/×3 better sensitivity than old 36 fb⁻¹ analyses from ATLAS^[*]/CMS:
 - Set limit at $\sigma_{HH} < 40 \times SM (exp.: 29 \times SM) \overset{V}{=} 1.25 \overset{V}{=}$

$VBF HH \rightarrow 4b$

Jan 2020

- Target the more extreme kinematic of $\kappa_{2v} \neq 1$ - Tight cut-based VBF cuts: $m_{ii} > 1$ TeV, $|\Delta \eta_{ii}| > 5$
- Largely based on earlier $HH \rightarrow 4b$ search on 36 fb⁻¹ dataset [JHEP 01 (2019) 030]
 - Same strategy used for HH \rightarrow 4b selection: ΔR_{hh} cuts dependent on m_{4b} , elliptic signal region in the plane of the two m_{2b} masses
 - Same estimation of main QCD multi-jet and tt background: from events with 2 b-tags, with weights derived in mass sideband
- New b-jet energy regression using a BDT

~10% better b-jet energy resolution

$VBF HH \rightarrow 4b$

- Use m(4b) as final discriminating variable Searching also for resonant VBF X \rightarrow HH
- Focus on probing anomalous κ_{2V}

Jan 2020

- Set $\kappa_V = 1$, $\kappa_\lambda = 1$
- SM ggHH negligible with present sensitivity
- Set limit -0.56 < κ_{2V} < 2.89 @ 95% CL (expected limit -0.67 < κ_{2V} < 3.10)
 - First constraints on κ_{2V} at LHC !
 - But still far from sensitivity to SM VBF HH. Set upper limit $\sigma/\sigma_{SM} < 840$ (exp. 540)

Constraining self-coupling from single H

- At NLO, single Higgs observables are sensitive to Higgs boson self-coupling
 - O(1%) corrections to $\sigma_{\rm H}$ and BRs for $\Delta \kappa_{\lambda}$ = 1 Largest effect inclusively is ~3.5% on $\sigma_{\rm ttH}$
 - Use of kinematic information, e.g. $p_T(H)$, can enhance the effect further (~×2-3)

Constraining self-coupling from single H

- Explored by both ATLAS & CMS in the latest single-H combinations

 ATLAS also including some kinematic information via STXS in VH & VBF prod.
- Constraints comparable to HH searches but only under tight mode assumptions
 - All other couplings fixed to SM, or only floating κ_V or only κ_f
- ATLAS: also combined H + HH fit*
 - Tighter constraint in κ_{λ} -only fit
 - Allow more general model with floating individual κ 's and also κ_λ
 - *: $ttH(\gamma\gamma)$ dropped from H inputs due to large overlap with HH(bb $\gamma\gamma$)

 Phys. Rev. Lett. 122 (2019) 121803
 ATLAS-CONF-2019-049
 65

 Phys. Lett. B 800 (2020) 135103
 CMS PAS HIG-19-0015

Overall summary of 95% CL limits on κ_{λ}

		ATLAS		CMS		
inputs	model.	ATLAS	(expected)	CMS	(expected)	
Single H	only κ _λ	-3.2, 11.9	-6.2, 14.4	-3.5, 14.5	-5.1, 13.7	
НН	only κ_{λ}	-5.0, 12.0	-5.8, 12.0	-11.8, 18.8	-7.1, 13.6	
H + HH	only κ _λ	-2.3, 10.3	-5.1, 11.2			
H + HH	κ's & κ _λ	-3.7, 11.5	-6.2, 11.6			

Disclaimer: these are still rather ad-hoc models; still a lot of work ahead for both theorists and experimentalists before we can have a more sounded global fit with full NLO SMEFT or HEFT

Giovanni Petrucciani (CERN)

- $H \rightarrow c\bar{c}$
- $BR_{SM}(H \rightarrow c\bar{c}) = 2.9\% \sim 1/20 \text{ of } BR(H \rightarrow b\bar{b})$

Jul 2019

- Target VH with V = Z $\rightarrow \ell \ell$, W $\rightarrow \ell \nu$, Z $\rightarrow \nu \nu$, with the combination of two strategies:
 - Resolved analysis: based on VH(bb) analysis, but with charm tagging. Signal extraction from fit to BDT
 - **Boosted analysis:** use anti- $k_T(R=1.2)$ jets with advanced H \rightarrow cc DNN tag (flavour + substructure), Signal extraction from groomed jet mass
- Multiple control regions to normalize in data the main backgrounds, i.e. V + jets and tt
- Set limits $\sigma \times BR(H \rightarrow c\bar{c}) < 70 \times SM (exp. 37 \times SM)$

Also older ATLAS VH($c\bar{c}$), 36 fb⁻¹, only Z $\rightarrow \ell\ell$ channel and simpler analysis, ATLAS Observed upper limit 110 × SM (expected 150 × SM) [PRL 120 (2018) 211802]

📈 Giovanni Petrucciani (CERN)

CMS PAS HIG-19-012

- SM BR mainly via $H \rightarrow Z Z/\gamma^* \rightarrow Z V$, but $H \rightarrow qq$ channel may have large enhancement in some BSM models
- Target $ho
 ightarrow \pi^+ \pi^-$ and $ho
 ightarrow K^+ K^-$
 - Select pairs of opposite-charge tracks, ΔR < 0.1 and p_T^{lead} > 10 GeV
 - 2. Require di-track pair to be isolated
 - 3. Select window in di-track mass

67

Giovanni Petrucciani (CERN)

 $H \rightarrow Z + \rho/\phi$

- Fit m(llππ) or m(llKK) to extract signal
 - Agnostic background model, a la H $\rightarrow \gamma \gamma$
- Set upper limits in the 0.3 2 % range
 - Acceptance depends on polarization, limits provided for different scenarios
 - Corresponding to ~ 860 1350 × SM BR

Also older ATLAS $H \rightarrow \gamma \rho/\phi$ with 36 fb⁻¹ Set BR limits at 52 / 208 × SM for ρ / ϕ [JHEP 07 (2018) 127]

68

QCD@LHC-X 2020, 2 Sept 2020

= 139 fb⁻¹

69

New (Apr 2020)

Giovanni Petrucciani (CERN)

 $H \rightarrow Z a \rightarrow \ell \ell j$

- Search for pseudoscalar "a" – e.g. in NMSSM or 2HDM+S models
- Target inclusive hadronic decays
 a → jet, for m_a < 4 GeV
 - **1. MLP regression** to estimate a mass from jet substructure information
 - MLP discriminator vs Z + jets bkg (using MLP regression as input)
 - Define signal region by cutting on m(llj) and discriminator output
- Estimate backgrounds from data:
 - "ABCD" method with sidebands in m(llj)
 & MLP discriminant (+ corrections)

QCD@LHC-X 2020, 2 Sept 2020

New (Apr 2020) QCD@LHC-

 $H \rightarrow Z a \rightarrow \ell \ell j$

Giovanni Petrucciani (CERN)

- Search for pseudoscalar "a"
- Target inclusive hadronic decays $a \rightarrow jet$, for $m_a < 4 \text{ GeV}$
- Good agreement found between data and background predictions in signal region and validation regions
- Set upper limits on $\sigma \cdot BR(H \rightarrow Za)$
 - Interpreted separately for $a \rightarrow gg / s\bar{s}$ (different efficiency of MLP discr. cut)
 - Also set upper limits on BR(H \rightarrow Z $\eta_c)$ and BR(H \rightarrow Z J/ ψ), but at BR ~ 200%

70

NEW FOR LHCP2020 QCD@LHC-X 2020, 2 Sept 2020

arXiv:2005.08694, sub. to JHEP

 $H \rightarrow a_{\mu\mu} a_{\tau\tau} at low m_a$

- Dedicated τ reco. for overlapping decay products of a $\rightarrow \tau_{\mu}\,\tau_{h}$
 - Gain +50% efficiency at low m_a

HPS (Hadrons Plus Strips) is the CMS algorithm for hadronic τ reconstruction using Particle Flow

 $H \rightarrow a_{\mu\mu} a_{\tau\tau} at low m_a$

- Dedicated τ reco. for overlapping decay products of a $\rightarrow \tau_{\mu}\,\tau_{h}$
- 2D fit in m($\mu\mu$) × m($\mu\mu\tau_{\mu}\tau_{h}$) plane
 - Fit separately in 3 m($\mu\mu$) ranges, to reduce correlations with m($\mu\mu\tau_{\mu}\tau_{h}$)
 - Control regions included to constrain the continuum and $\psi_{(2S)}$ and Y peaks
- Set model-independent limits on BR(H \rightarrow aa \rightarrow µµ $\tau\tau$) ~ 0.02–0.08%
 - And in 2HDM+S benchmark models
 - Also demonstrate potential for $H_{Heavy} \rightarrow aa using m_{H} = 300 \text{ GeV}$

NEW FOR LHCP2020 QCD@LHC-X 2020, 2 Sept 2020

= 36 fb⁻¹

 $H \rightarrow a_{b\bar{b}} a_{b\bar{b}}$ at low m_a

- Rely on $Z_{\ell\ell}$ H associated production
- Recluster jets with anti-k_T(R=0.8)
 - One ak8 jet for each a \rightarrow bb̄ candidate
- Tag ak8 jets relying on substructure and b-tagging information from associated tracks and sec. vertices
 - Trained vs jets that contain a single b quark
 - ×100/×30 rejection of b-jets from tt & Z+jets at a → bb̄ signal efficiency of ~ 25% / 30%
- Select events with kinematic compatible with H \rightarrow aa decay
 - Separately each m_a mass hypothesis

Giovanni Petrucciani (CERN) **NEW FOR LHCP2020**

 $H \rightarrow a_{bb} a_{bb}$ at low m_a

- Define signal and control regions depending on m_{ll} and number of loose (LP) & tight (HP) ak8 tags
 - Constrain dominant backgrouds from Z+jets and ttbar
- Set limits on $\sigma_{ZH} \times BR(H \rightarrow aa \rightarrow 4b)$ for m_a in 15–30 GeV range
 - Best sensitivity at $m_a = 20 \text{ GeV}$ Set limit at $80\% \times \sigma_{ZH}^{SM}$ (exp. $60\% \times \sigma_{ZH}^{SM}$)
 - at large m_a , sensitivity taken over by older $H \rightarrow aa \rightarrow 4b$ "resolved" analysis [JHEP 10 (2018) 031]

Giovanni Petrucciani (CERN)

NEW FOR LHCP2020 QCD@LHC-X 2020, 2 Sept 2020

15

 $L = 137 \text{ fb}^{-1}$

- Search for dark photons or ALPs
- Based on $H \rightarrow Z Z^* \rightarrow 4\ell$ analysis – objects, background estimation, ...
- 1. $H \rightarrow Z X \rightarrow 4\ell$ search:

- m_{Z1} > 40 GeV, 118 < m_{4l} < 130 GeV

- Scan m_{Z2} distribution with window of size 4% / 10% for X $\rightarrow \mu\mu$ / ee
- Set limits for $X \rightarrow \ell \ell$, $\mu \mu$, ee

Giovanni Petrucciani (CERN)

NEW FOR LHCP2020 QCD@LHC-X 2020, 2 Sept 2020

CMS PAS HIG-19-007

QCD@LHC-X 2020, 2 Sept 2020

$MSSM \; A/H \to \tau\tau$

• Flagship mode at high $tan(\beta)$

Feb 2020

- Enhanced BR(A/H $\rightarrow \tau\tau$) and bbH production
- Main backgrounds:
 - Reducible jet $\rightarrow \tau_h$: from data using fake rate methods
 - Irreducible Z $\rightarrow \tau \tau$, tt: estimated from MC, plus CR at high $m_T^{\ell \nu}$ for tt
- Final discriminating variable

$$m_T^{tot} = \sqrt{\left(p_T^{\tau 1} + p_T^{\tau 2} + E_T^{miss}\right)^2 - \left(\overline{p_T^{\tau 1}} + \overline{p_T^{\tau 2}} + \overline{E_T^{miss}}\right)^2}$$

Giovanni Petrucciani (CERN) Feb 2020

QCD@LHC-X 2020, 2 Sept 2020

ь

MSSM A/H $\rightarrow \tau \tau$

- Interpretation as limits on $\sigma \times BR$ for generic scalar ϕ
 - Provide 1D and 2D limits and likelihoods vs m_{φ}, σ_{ggF} , σ_{bbH}
 - Largest excess at $m_{\phi} \sim 400$ GeV, local significance ~ 2σ

MSSM A/H $\rightarrow \tau \tau$

- Interpretation as limits on σ×BR for generic scalar φ
 - Provide 1D and 2D limits and likelihoods vs m_{ϕ} , σ_{ggF} , σ_{bbH}
 - Largest excess at m $_{\phi}$ ~ 400 GeV, local significance ~ 2 σ
- MSSM interpretations
 - New M_h^{125} benchmark scenarios e.g. tan(β) < 8 at 1 TeV (expected: < 10)
 - hMSSM, to compare with old result

Also older CMS result on 36 fb⁻¹ [JHEP 09 (2018)007] M_h^{125} limits, e.g. tan(β) < 15 at 1 TeV (expected: < 16)

RN) Sep 2019

Lepton flavour violating decays

- Probe for $H \rightarrow e\mu$: direct test for LFV $y_{e\mu}$ Yukawa coupling
 - Very stringent limits from $\mu \rightarrow e\gamma$ and electron EDM, but depend on yet unobserved y_{ee} and y_{µµ}
- Categorize by p_T^{ℓ} , $|\eta_{\ell}|$, $p_T^{\ell\ell}$
 - Select events with higher S/B or better dilepton mass resolution
- Set upper limit BR_{eµ} < 6.2 × 10⁻⁵
 Factor ~6 better than Run 1 limit
- Also set BR(H \rightarrow ee) < 3.6 × 10⁻⁴
 - $BR_{SM} \sim 5 \times 10^{-9}$ well out of reach

Also older 36 fb⁻¹ from CMS [<u>JHEP 06 (2018) 001</u>] and ATLAS [<u>PLB 800 (2020) 135069</u>] setting limits on BR(H \rightarrow et) and BR(H \rightarrow µt) in the 0.25% – 0.6% range

QCD@LHC-X 2020, 2 Sept 2020

$H \rightarrow \gamma + invisible$

- Probe e.g. for $H \rightarrow \gamma \gamma_D$ (dark photon)
- Rely on Z(ll) H associated production
 - Require high- $p_T Z_{\ell\ell}$, back-to-back and balanced with $\gamma + E_T^{miss}$ vector
- Dominant background: WZ $\rightarrow 3\ell\nu$
 - With electron mis-id as photon, or genuine γ from ISR/FSR and a lost ℓ
- Transverse mass m_{τ} of γ + E_{τ}^{miss} system used to look for a signal – Control regions for WZ, tt/WW, ZZ
- Set limits **BR(H** \rightarrow **y** + **inv.)** < 4.6%
 - Tiny BR_{SM}(H \rightarrow Z $\gamma \rightarrow \nu \nu \gamma$) ~ 3×10⁻⁴

Part II: brief outlook at HL-LHC

- HH production: ~4 σ evidence, measure κ_{λ} with ~ ±50% uncertainty
 - Projections based on a combination of extrapolations from Run 2 analyses and new analyses designed for HL-LHC

83

Part III: brief outlook at HL-LHC

- Sensitivity for Higgs boson physics at HL-LHC evaluated back in 2018 in the context of the European Strategy update
 - Mostly based on knowledge from early LHC run 2 analyses (2016 data)
- Single Higgs boson observables: can reach few-percent precision

Giovanni Petrucciani (CERN)

Attic

STXS H $\rightarrow \gamma\gamma$: results, ATLAS (27 params)

CP studies: fermion couplings

- In CP-violating models, Higgs-fermion interactions can have both $h\bar\psi\psi$ and $h\bar\psi\gamma_{_5}\psi$
- Multiple recent efforts to probe for them:
 - for top, from ttH & tH production with $H \to \gamma \gamma$
 - for top, or possible BSM heavy quark, from ggH + 2 jets with $H \rightarrow 4\ell$ (h $\bar{\psi}\gamma_5\psi$ yields h $G^{\mu\nu}\tilde{G}_{\mu\nu}$ term in heavy top limit)
 - for tau, from polarization in tau decays

 $H \rightarrow Z \gamma$

 SU(2)_L symmetry ties together the HWW, HZZ, Hγγ, HZγ interactions

May 2020

- If heavy new physics respects SU(2)_L, correlated effects across the four
- BR(H \rightarrow Z $\gamma \rightarrow \ell \ell \gamma$) = 0.5 · 10⁻⁴
 - Similar BR to H \rightarrow 4 ℓ , but larger background from Z γ production
- As in H $\rightarrow \mu\mu$, key ingredients are:
 - Improve signal mass resolution: FSR recovery, kinematic refit of $Z \rightarrow \ell \ell$
 - Improve S/B via categorization: BDT targeting VBF production; p_T and p_{Tt}

$H \rightarrow Z \gamma$: fit and results

May 2020

Giovanni Petrucciani (CERN)

Fit results by category and combined

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7}\;(1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6}\ (1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}\ (1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7} \ (1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{\mathrm{T}t} \ \mu\mu$	$2.9^{+3.0}_{-2.8}\;(1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6}\ (1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9} \ (1.0^{+0.9}_{-0.9})$	2.2 (1.2)

We may be starting to see the first hints of the signal