Minimum Bias Physics at LHCb

Osvaldo Aquines MPIK Heidelberg On behalf of the LHCb collaboration

Winter Workshop on Recent QCD Advances at the LHC Les Houches, February 13th - 18th, 2011

Minimum Bias Physics

Strangeness Production

• K_s^0 cross-section

only tracking information, low luminosity, early calibration

• ϕ cross-section

particle identification (PID) for at least one track

Baryon Number Transport

• $\overline{\Lambda} \, / \Lambda$ ratios

only tracking information, no need for absolute luminosity, systematics cancel

● *p̄/p* ratio

PID required, no need for absolute luminosity

Baryon Suppression

• $\overline{\Lambda}/K_s^0$ ratio

only tracking, no need for absolute luminosity

Motivation

- test fragmentation models
- first pp measurements at the TeV scale
- tune generators

LHCb covers forward rapidity region and can measure down to $p_T{\sim}0$

The forward region is more sensitive to Baryon Number

HCp

4 / 34

Osvaldo Aquines (MPIK Heidelberg)

Results will be compared to predictions from two generators

- Perugia0 tune Phys. Rev. D82:074018, 2010
- LHCb tune PYTHIA 6.421 LHAPDF-CTEQL61

Particles decayed through EVTGEN

The LHCb Detetctor

LHCb is a forward spectrometer (2 $<\eta<5$) intended for precision measurements of CP violation and rare decays

fully instrumented in its whole acceptance

- Tracking
 - **VELO**, **TT** and **T** stations
 - reconstruction efficiency 95%
- Magnet 4Tm(± polarity)
- ECAL γ ,e
- HCAL p,K, π ,n
- RICH
- MUON System

Tracking

- VELO: $r-\phi$ geometry
- movable (very close to the beam)
- partially opened at 0.9 TeV
- resolution for primary(secondary) vertices $\sigma_z \approx 50(150) \ \mu m$
- long tracks provide best momentum information

Recorded luminosity

$$\begin{array}{c|c} 0.9 \text{ TeV} & 7 \text{ TeV} \\ \hline K_s^0 \text{ cross-section} & \mathsf{X} \\ \hline \phi \text{ cross-section} & & \mathsf{X} \\ \hline \overline{\Lambda}/\Lambda \& \overline{\Lambda}/K_s^0 & \mathsf{X} & & \mathsf{X} \\ \hline \overline{\rho}/p & & \mathsf{X} & & \mathsf{X} \end{array}$$

Osvaldo Aquines (MPIK Heidelberg)

Les Houches Feb 13-18, 2011 8 / 34

Strangeness Production

Prompt K_s^0 production in pp collisions at $\sqrt{s} = 0.9$ TeV (Physics Letters B 693 (2010) pp. 69-80)

- prompt: directly produced in *pp* collision, or in a non-weakly decaying resonance
- cross sections in bins of transverse momentum p_T and rapidity y
- p_T below 0.2 GeV/c and 2.5 \leq y \leq 4.0
- never explored before at this energy
- novel luminosity measurement technique

Luminosity Measurement

luminosity measurement combining accelerator and detector information

Integrated Luminosity: $(6.8 \pm 1.0) \mu b^{-1}$

- bunch currents, taken from LHC machine measurements
- beam profiles and crossing angle measured with VELO (beam-gas events)
- profiles assumed to be gaussian

Two Selections

downstream tracks

selection based on proper time and pointing angle

- higher statistics (due to VELO not being fully closed and K⁰_s long lifetime)
- most bins taken from this measurement

long tracks

selection based on impact

parameters

- better resolution
- Iower background
- lowest p_T bins taken from this measurement

Prompt- K_s^0 cross section

• measured cross sections show harder p_T spectra than PYTHIA

measurement contributes information for hadronization models

Prompt- K_s^0 cross section

- consistent with previous measurements
- K_s^0 cross-section measured for the first time at 0.9 TeV
- LHCb results extend to forward rapidity range and lower p_T

RICH PID

 charged particle identification in whole detector acceptance in a momentum range of 2 - 100 GeV/c
unique in LHC experiments

Osvaldo Aquines (MPIK Heidelberg)

LHCb RICH

- measure projected Cherenkov radiation rings
- compare to hypothesis
- discriminate K,π,p

p, π ,K discrimination

discrimination using Delta Log Likelihood DLL(a-b) = $\Delta ln_{ab} = ln(L_a/L_b)$

• π and p samples from V⁰-decays: $K_s^0 \to \pi^+\pi^-$ and $\Lambda \to p\pi^-$

 K sample from Φ→ K⁺K⁻, one track identified by RICH and the second left for PID measurement

Inclusive ϕ cross-section

- study (hidden) strangeness production
- vector meson production
- test fragmentation models

LHCb-CONF-2010-014

- $\phi \rightarrow K^+K^-$ candidate selection using RICH PID information
- 5.6 *nb*⁻¹ at 7 TeV

Inclusive ϕ cross-section

- ϕ production larger than expectation
- p_T harder than models \rightarrow similar to K_s^0 results

Baryon Number Transport

20 / 34

Baryon Number Transport

- ratios for prompt particles
- 2010 data $\sqrt{s}{=}0.9~{\rm TeV}~(0.3~nb^{-1})$ and $\sqrt{s}{=}7~{\rm TeV}~(0.2~nb^{-1})$
- systematics cancel partially

 $\overline{\Lambda}/\Lambda$ ratio LHCb-CONF-2010-011

- kinematic selection based on impact parameters
- no PID used

p/p ratio LHCb-CONF-2010-009

- RICH information $p(\bar{p})$ sample $\sim 95\%$ purity
- independent systematics with respect to $\overline{\Lambda} \, / \Lambda$

$\overline{\Lambda} \, / \Lambda$ ratio - clear energy dependence

Osvaldo Aquines (MPIK Heidelberg)

Λ / Λ Baryon Number Transport

observed dependence on difference to beam rapidity

 $\Delta y = y_{heam} - y(\Lambda)$

(allows comparing measurements with different centre-of-mass energy)

scaling behaviour consistent with STAR

Osvaldo Aquines (MPIK Heidelberg)

Osvaldo Aquines (MPIK Heidelberg)

Minimum Bias Physics at LHC

t LHCb Les Houches Feb 13-18, 2011 25 / 34

\bar{p}/p Ratio

• energy dependence \rightarrow similar to $\overline{\Lambda} / \Lambda$ results

- 0.9 TeV: baryon number transport higher than predictions dependence on p_T
- 7 TeV: data approaching expectations ratios approaching unity

Osvaldo Aquines (MPIK Heidelberg)

\bar{p}/p Baryon Number Transport

plot as a function of difference to beam rapidity $\Delta y = y_{beam} - y(p)$

- $\bullet\,$ similar behaviour as $\overline{\Lambda}\,/\Lambda$
- slight p_T dependence
- consistent with previous measurements

$\overline{\Lambda}/K_s^0$ Baryon Suppression

same analysis as $\overline{\Lambda}\,/\Lambda$ ratio LHCb-CONF-2010-011

- baryon suppression lower than expected
- weak energy dependence
- sensitive observable for MC tunning

Summary

New kinematic region explored by LHCb

- K_s^0 production measurements extended to lower p_T and new y range
- will provide valuable input for hadronization models and MC tunning

Measurements indicate

- harder p_T spectra than predicted
- higher baryon transport
- lower baryon suppression
- underestimated strangeness production

Backup

Luminosity Measurement

- n_i: bunch currents, taken from LHC machine measurements
- position μ_{ij} and Gaussian width σ_{ij} of the underlying distributions, measured beam profiles on VELO (beam-empty events)

 $\overline{\Lambda}/\Lambda p_T$

 p_T harder than expectation \rightarrow similar to K_s^0 results

$\overline{\Lambda} \, / \Lambda$ magnet up and down

consistency between two magnet polarities

32 / 34

K_s^0 selections

Variable	Requirement
Downstream-track selection	
Each π -track momentum Each π -track transverse momentum Each track fit χ^2 /ndf Distance of closest approach of each π -track to the <i>z</i> axis K_S^0 decay vertex fit χ^2 /ndf <i>z</i> of K_S^0 decay vertex <i>z</i> of pseudo-PV $\cos \theta_{\text{pointing}}$ K^0 procent time (<i>c</i> τ)	> 2 GeV/c > 0.05 GeV/c < 25 > 3 mm < 25 < 2200 mm < 150 mm > 0.99995 > 5 mm
Long-track selection	
z of associated PV Each track fit χ^2 /ndf K_S^0 decay vertex χ^2 /ndf $z(K_S^0) - z(PV)$ Variable v related to impact parameters	< 200 mm < 25 < 100 > 0 mm > 2

Osvaldo Aquines (MPIK Heidelberg)

RICH discrimination with DLL

