Heavy Quark and Quarkonia dynamics in the QGP

V. GRECO UNIVERSITA DI CATANIA INFN-LNS

Winter Workshop "Advances in QCD@LHC"- Les Houches, 14-18 February 2011

Specific of Heavy Quarks Comparing m_{HQ} to Λ_{QCD} and T

- m_{c,b} >> A_{QCD} produced by pQCD processes (out of equil.)
- $\succ \tau_{0} {\sim} 1/m_{c,b} << \tau_{QGP}$ they go through all the QGP lifetime
- $> m_{c,b} >> T_0$ no thermal production
- $\succ \tau_{eq} > \tau_{QGP} >> \tau_{q,g}$ carry more information
- m>>T -> q²<<m² transport reduced to Brownian motion
- $> q_0 << |\vec{q}|$ Concept of potential V(r) <-> lQCD

QGP structure in the Heavy Quark sector

Open Heavy Flavor B and D

Non perturbative HQ interaction: Qq resonances

- problematic R_{AA}- v₂ relation for jet quenching (+ elastic)
- Resonant D-like scattering at T>T_c
- Relevance of Hadronization mechanism for HQ

<u>Quarkonia</u>

***** Link J/ $\Psi \ll D$ with a dominance of regeneration

one underlying c distribution

Two Main Observables in HIC

Nuclear Modification factor

 $R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{N_{coll} d^2 N^{NN} / dp_T d\eta}$

- Modification respect to pp
- Decrease with increasing partonic interaction

Anisotropy p-space: Elliptic Flow v₂

Ideas about Heavy Quarks before RHIC

1) $m_Q >> m_q$ HQ not dragged by the expanding medium:

- spectra close to the pp one
- small elliptic flow v₂

2) $m_Q >> \Lambda_{QCD}$ provide a better test of jet quenching:

- Color dependence: R_{AA}(D/h)
- Mass dependence: R_{AA}(B/D/h)

3) $\overline{Q}Q$ Quarkonium dissoved by charge screening: Thermometer

$$V \approx -\alpha_{eff} \frac{e^{-m_D r}}{r}$$

$$r_{Q\overline{Q}} \approx \frac{1}{m_D} \approx \frac{1}{gT}$$

$$\chi_c$$
, J/ Ψ , χ_b , Y, ...

More binding smaller radius higher temperature

Problems with ideas 1 & 2

 $^{\sim}$

0.25

Strong suppression

PHENIX preliminary

STAR preliminary c, $\hat{q} = 14 \text{ GeV}^2/\text{fm}$ 0.2 + b, $\hat{a} = 14 \text{ GeV}^2/\text{fm}$ 0.15 c + b, $\hat{g} = 4 \text{ GeV}^2/\text{fm}$ 0.1 0.05 Au-Au, 0-80% 0 $\sqrt{s_{NN}} = 200 \text{ GeV}$ -0.05 2 5 10 electron p_{_} [GeV] N. Armesto et al., PLB637(2006)362 a

Radiative energy loss not sufficient
Charm seems to flow like light quarks

<u>Heavy Quark strongly dragged by interaction with light quarks</u> pQCD does not work may be the real cross section is a K factor larger

Charm dynamics with upscaled pQCD cross section

Fokker-Plank for charm interaction in a hydro bulk

Diffusion coefficient

$$D \propto \int d^3k \left| M_{g(q)c}(k,p) \right|^2 k^2$$

Moore & Teaney, PRC71 (2005)

It's not just a matter of pumping up pQCD cross section: too low R_{AA} or too low v₂

Indications from IQCD

 J/ψ (p = 0) disappears around 1.7 T_c

We do not know what is behind $\rho(\omega)$: bound states, resonances, ...

cq, cq
does not undergo a free scattering,
but there are remants of confinement!?
Look at the scattering under
a V(r) derived from IQCD

There can be Qq (D-like) resonant scattering!?

V_{IQCD} gives resonance states!

Kaczmarek et al., PPS 129,560(2004)

<u>Scattering states included:</u> Singlet + Octet -triplet -sextet

> "Im T" dominated by meson and diquark channel

Drag Coefficient from IQCD-V(r)

Opposite T-dependence of γ not a K-factor difference

With IQCD-V(r):

-> one can expect more V_2 with the same R_{AA} because there is a strong interaction just when v_2 is formed.

ImT increase with temperature compensates for decreasing scatterer density

Does it solve the problem of "too low R_{AA} or too low v_2 "?

The modeling

D,B

Κ

е

Ve

HQ scattering in QGP

T<<mo

From scattering matrix $|\mathsf{M}|^2$ $D = \frac{1}{2} \int d^3k |M(k,p)|^2 p^2$

• T-matrix V(r)-IQCD

Hadronization

$$\frac{d^3 N_{D,B}}{d^3 P} = C_{D,B} \int_{\Sigma} f_{c,b} \otimes f_{\overline{q}} \otimes \Phi_M + \int_{\Sigma} f_{c,b} \otimes D_{c,b \to D,B}$$

Semileptonic decay R_{AA} & v₂ of "non-photonic" e (with B contamination \otimes)

T-matrix calculation vs PHENIX data

Impact of hadronization mechanism

Hees-Mannarelli-Greco-Rapp, PRL100 (2008)

$$\frac{d^3 N_{D,B}}{d^3 P} = C_{D,B} \int_{\Sigma} f_{c,b} \otimes f_{\overline{q}} \otimes \Phi_M + \int_{\Sigma} f_{c,b} \otimes D_{c,b \to D,B}$$

add guark momenta

Impact of hadronization **Coalescence increase** both R_{AA} and v₂ toward agreement with data resonant states naturally merging into a coalescence mechanism

 f_a from π, K Greco,Ko,Levai - PRL90

From the point of view of the shear viscosity

Csernai et al., PRL96(06)

HQ are more sensitive to the details of dynamics $(t_{eq} \sim t_{QGP})$ It is necessary an interaction that increases as T -> T_c, i.e. when we approach the phase transition

The long standing issue of Quarkonia Suppression

The Quarkonium Yield involves (problems with ideas 3):

≻ T_{diss}(Ψ) distruction and absence of formation at T> T_{diss}
 ≻ Γ_{inel} (Ψ) formation and destruction (gΨ-> cc̄, gΨ-> cc̄g)

Dynamics of Quarkonia in the QGP

• Boltzmann-like transport or $p^{\mu}\partial_{\mu}f_{\Psi}(\vec{r},t;\vec{p}) = -\omega_{p} \Gamma_{\Psi}(\vec{r},t;\vec{p}) f_{\Psi}(\vec{r},t;\vec{p}) + \omega_{p} \beta_{\Psi}(\vec{r},t;\vec{p})$ dissociation regeneration

Rate equations:

$$\frac{dN_{\psi}}{d\tau} = -\Gamma_{\psi} \left(N_{\psi} - RN_{\psi}^{eq}\right)$$
Non-equilibrium effect
 $R = 1 - \exp\left(-\int d\tau / \tau_{eq}(T)\right)$

Include in-medium effects in Γ_ψ, β_ψ
 which depend on σ^{*}, ε_{bind}(T), m^{*}

At SPSAth&Hlppressionuppressionsplained No beauithenofreegeneeration ~ N_c²

 $dN_{c\bar{c}} / dy \approx 0.1 \quad (SPS)$ $dN_{c\bar{c}} / dy \approx 2.5 \quad (RHIC)$

At RHIC models with no regeneration predicted too much suppression... <u>except the simple ones</u> <u>saying J/Y survives up T~ 2T_c</u>

<u>Two opposite scenarios</u> <u>& all the intermediate ones</u>

Trying to sinthetize about 100 papers ... in 1 slide

1) STRONG BINDING:

 $T_{diss} \sim 2T_c$ negligible suppression of J/ Ψ SPS & RHIC Similar because of the absence of χ_c , Ψ ' feedown

2) WEAK BINDING:

T_{diss}~ T_c strong suppression increasing with energy
SPS & RHIC similar because at RHIC
the regeneration compensates (it was a prediction)
Partially posible also du to the uncertainty in the charm yield

The way out is to look at Open Heavy Flavor to see Hidden Heavy Flavor

Quarkonium <--> Heavy-Quark

We can go beyond the J/Ψ yield and thanks to the strong charm collective dynamics distinguish primordial from c̄c coalescence:
 - softer p_T spectra of J/Ψ <-> dN/dp_T of D

- Large elliptic flow $v_2(\Psi) \ll v_2(\Phi)$

Rapp, Blaschke, Crochet, Prog.Part.Nucl.Phys.65(2010)

Enhancement of J/Ψ at LHC!?

Pure statistical model at T_c + corona effect

Including both suppression and regeneration during all the evolution

A. Andronic, P. B-M., et al., NPA 789 (2007)

Rapp R., X. Zhao, arXiV:1102.2194[hep-ph]

 $\frac{dN_{c\bar{c}}}{dy} \approx 0.1 \quad (SPS)$ $\frac{dN_{c\bar{c}}}{dy} \approx 2.5 \quad (RHIC)$ $\frac{dN_{c\bar{c}}}{dy} \approx 15 - 20 \quad (LHC)$

$$N_{J/\psi} \propto N_{c \overline{c}}^2$$

Summary

Heavy quarks entails npQCD dynamics:

- meson-like and diquark resonant scattering in QGP
- solves the problematic R_{AA} v_2 correlation
- associated to a η/s (T) typical of phase transitions
- need to disentangle B and D

Relevance of hadronization via coalescence

- resonant scattering is a precusor

A new era for the understanding of c quarkonia

- $dN/dp_T \& v_2 (p_T)$ for both *open* and *hidden* HF can be linked to one underlying c distribution

Greco, Ko, Rapp-PLB595(04)

Signatures of a coalescence component!?

At SPS observed a suppression of about a factor 2

$$\begin{split} N_{c\bar{c}} &\approx 0.17 \quad (SPS) \\ N_{c\bar{c}} &\approx 10 - 20 \ (RHIC) \\ N_{c\bar{c}} &\approx \ (LHC) \end{split}$$

J/Y can come not from the initially produced Not suppressed but from the abundant charm can recombine

Less suppression at midrapidity! Because of more regenration

R_{AA} and v₂ generation with time

RAA generated earlier than v2 V2 grows almost linearly

From RHIC to LHC?

For min. bias.

Hydro bulk dN/dy=1100 (dN/dy=2200 for central)

 $T_{init} = 3 T_c$

Radial flow β_{max} =0.68

V_{2q} light quark =7.5 % (hydro or numerology)

v_{2q}(p_T) from a cascade [Ferini,Colonna, Di Toro,VG]

 dN/d^2p_T of b,c from PYTHIA (ALICE PPR-JPG32)

Resonances off T>2T_c

Borghini-Wiedemann, JPG3508)

Calculation not done with IQCD, but

t
$$\mathcal{L}_{Dcq} = G_D \ \overline{q} \ \frac{(1+\psi)}{2} \Gamma \phi_D \ c + \text{h.c.}$$

From RHIC to LHC - R_{AA}

RHIC

LHC

◆ Suppression: R_{AA} similar at RHIC and LHC!
 → Harder initial spectra at LHC
 → Resonance ineffective ("melted" T>2T_c) at early stage!

For 3-body scattering opposite behavior !

From RHIC to LHC – V_{2 electrons}

v₂ similar at RHIC and LHC!

- Resonance effective when anisotropy is reduced
- > Strong drag with the bulk flow at later stage!
- \succ v₂ slightly higher at low p_t

For 3-body scattering opposite behavior !

What is measured till now is the single e

the lepton can be reconstructed

Single-Electron Decays

 $B \rightarrow Dl v_1$

 $D \rightarrow K l v_{l}$

D-Mesons

bottom crossing at 5GeV !?
strategy: fix charm with D-mesons, adjust bottom in e[±]-spectra

b/c similar to pQCD Cacciari, Nason, Vogt, PRL95(2005)

Charm Thermalization

LHC spectra considerably harder !
 At Tc charm nearly thermalized
 Resonances switched-off at 2 Tc

Open-Charm Resonances in QGP

As first test we used an effective model:

$$\mathcal{L}_{Dcq} = G_D \ \overline{q} \ \frac{(1+\psi)}{2} \Gamma \phi_D \ c + \text{h.c.}$$

$$\Gamma = 1, \gamma_5, \gamma_\mu, \gamma_5 \gamma_\mu \ \text{2 parameters: } G_D, m_{\text{c}}$$

Assuming Φ field pseudo/scalar + axial/vector "D-like" mesons [chiral + HQ(spin) symmetry]
cross section ISOTROPIC

$$t_{eq}$$
 down to 5 fm/c at RHIC !

Ok, but can it describe R_{AA} and v_2 ?

Equilibration time

Uncertainty from potential parametrization

[Wo] quenched IQCD Wong, PRC72(05) [SZ] unquenched IQCD Shuryak-Zahed, PRD70

Moderate dependence on parametrization!

In medium scattering

 $\frac{\text{Dynamical dissociation}}{(\mathbf{QQ}) + \mathbf{g} \rightarrow \mathbf{Q} + \mathbf{Q} + \mathbf{X}}$

$$(\tau_{\Psi})^{-1} = \sum_{i=q,g} \int \frac{d^3k}{(2\pi)^3} f^i(k_0,T) \sigma_{\Psi}^{QG} v_{rel}$$

✓ Quarkonia dissociated also below T_{Diss}
 ✓ Lifetime of the QGP is essential

 \bar{c} gluon-dissociation inefficient for c m_w≈ 2 m_c*

Calculation of Collisional energy loss

9

Transport Equation in quasi-particle approx.

$$\left[\frac{\partial}{\partial t} + \frac{\vec{p}}{E}\frac{\partial}{\partial \vec{x}}\right]f(x, p, t) = \int d^3k \left[w(p+k)f(p+k) - w(p, k)f(p)\right]$$

w(p,k) directed linked to the cross section

[Svetitsky '88, Braaten '91, Mustafa etal '98, Molnar etal '04 Zhang etal. '04, Teaney+Moore'04]

• dominated by *t*-channel gluon-ex in $gc \rightarrow gc$:

Expanding w(p,k) around p~k : dominated by soft scattering: (resonable for heavy quarks)

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial (pf)}{\partial p} + D \frac{\partial^2 f}{\partial p^2}$$

Fokker-Plank equation Background not affected by heavy quarks

$$\gamma p = \int d^3 k \ w(k, p) \ k$$
$$D = \frac{1}{2} \int d^3 k \ w(k, p) \ k^2$$

scatt. rate

diff. const.

Drag & Diffusion p-indipendent

$$-\frac{dE}{dx} = \gamma p$$

Baryon contamination due to coalescence ... !?

P. Soresen, nucl-ex/0701048 G. Martinez-Garcia et al., hep-ph/0702035

- Contamination of Lc in single e : enhance v_{2e}: v_{2Ac} > v_{2D}
- enahencement modest + BRe 4.5%

Apparent reduction if $\Lambda_c/D \sim 1$ consistent with RHIC data (pt~2-4 GeV)

Heavy-Flavor and jet quenching- Workshop, Padova 29-9-2005

$$G_{\alpha}(\tau, p; T) = \int_{0}^{\infty} \frac{d\omega}{2\pi} \ \rho_{\alpha}(\omega, p; T) \ K(\omega, \tau; T)$$

with the finite-T kernel

$$K(\omega, \tau; T) = \frac{\cosh[(\omega(\tau - 1/2T)]]}{\sinh[\omega/2T]}$$

