Open heavy flavor production in p-p collisions in the ALICE experiment at the LHC

Francesco Prino INFN – Sezione di Torino

for the ALICE COLLABORATION

ΙΝ

Winter Workshop on Recent QCD Advances at the LHC

Les Houches, February 13th - 18th, 2011

Heavy flavors in ALICE Physics Motivations

A-A collisions

Probe the high density medium via heavy quark energy loss, flow, hadronization mechanism ...

p-p collisions

- ⇒ Reference for quenching studies in AA
- \Rightarrow Test pQCD predictions in a new energy regime (3.5× $\sqrt{s_{TEVATRON}}$)
- \rightleftharpoons Probe an unexplored region of small Bjorken x with charm at low $p_{\rm T}$ and/or forward rapidity

• p-A collisions

 \Rightarrow Address initial state effects (Cronin enhancement, nuclear PDFs) ²

Heavy quarks in p-p

- Charm production on the upper edge of theory predictions at Tevatron and RHIC
- Beauty differential cross section at Tevatron and LHC well reproduced by pQCD calculations

Heavy flavors with ALICE

ITS: vertexing + tracking TPC: tracking + PID (π , K, e) TOF: PID (π , K, p) TRD: PID (π , e) EMCAL: PID (e) MUON: μ tracking + PID

- Open charm from hadronic decays at central rapidity
 - $D^0 \rightarrow K^- \pi^+$
 - $\mathsf{D}^{\scriptscriptstyle +} \to \mathsf{K}^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +}$
 - $D^{\star} \rightarrow D^0 \pi^+$
 - $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

$$D_s \rightarrow K^- K^+ \pi^-$$

- $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$
- Open charm and open beauty from semileptonic decays D, B $\rightarrow e^{\pm} + X$ (central rapidity) D, B $\rightarrow \mu^{\pm} + X$ (forward rapidity)
- Open beauty from nonprompt J/ψ at central rapidity $B \rightarrow J/\Psi \rightarrow e^+e^-$

p-p at √s= 7 TeV: Trigger and data sample

• Minimum bias trigger

SPD (Silicon Pixels, |η|<2) or
 VOA (Scintillator, 2.8<η<5.1) or
 VOC (Scintillator, -3.7<η<-1.7)

 ✓ At least 1 charged particle in 8 units of pseudo-rapidity

 ✓ 95% of σ_{inel}
 ⇒ Activated in coincidence with BPTX beam pickups

• Single muon trigger

⇒ Forward muons in coincidence with minimum bias trigger

• Data sample

- ≈8.5·10⁸ Min. Bias events and ≈1.3·10⁸ muon triggers collected in p-p 2010 run
- Analysis shown here based on 1.4 nb⁻¹ for electrons and D mesons, 3.49 nb⁻¹ for muons

Single muons

10

197

111

 $(\mathbf{8})$

MUON (tracking,id)

μ

Heavy-flavor single muon

Analysis strategy

- Require muon trigger signal to remove hadrons and low p_t secondary muons
- Remove residual decay muons by subtracting MC dN/dp_t normalized to data at low p_t
 - ✓ Alternative method: use muon distance-of-closest-approach to primary vertex
 - ✓ What is left are muons from charm and beauty

- Systematic error from the subtraction of background from decay muons from π and K $\approx\!20\%$
 - Use different PYTHIA tunes (Perugia-0 vs. ATLAS-CSC) and vary secondary yield to estimate systematic error
- Systematic error from the efficiency correction ≈5%
 - \Rightarrow Due to the description of the detector response in the MC and (to a much lower extent) to the p_t shape of the signal used as input in the MC

Heavy flavor single muon: dσ/dp_t

- Integrated luminosity: 3.49 nb⁻¹
- Statistical errors within markers
- 10% systematic error on MB cross section (due to luminosity uncertainty) not included

- p_t differential cross section for muons from B and D decays measured in pt range 2.0-6.5 GeV
 - pt reach can be extended (up to 20 GeV/c) with improved alignment and increased statistics
- pQCD prediction (FONLL) reproduces the shape of measured cross section and is in agreement with data within errors

Single electrons

ITS (tracking+vertexing) Provide TPC (tracking + e/π id) TOF (p/K/ π +e id)

Next step: use TRD and EMCAL to extend the electron identification to higher momenta

Heavy-flavor electrons

• Present analysis strategy ("the Cocktail")

Reconstruct inclusive electron transverse momentum spectrum

- ✓ From high quality TPC+ITS tracks, requiring a hit in the innermost ITS layer to reduce contribution from electrons from photon conversion in the material
- \checkmark Electron identification using time-of-flight in TOF and dE/dx TPC
- Efficiency and acceptance corrections from Monte Carlo simulations
- Extract electrons from heavy flavor decays by subtracting the p_t spectrum of background contributions from an electron cocktail

Next step:

Exploit the high resolution on track impact parameter to select electrons from heavy flavor decays (beauty in particular)

Electron identification

Corrected spectrum and cocktail

• Cocktail ingredients:

 \Rightarrow Dalitz decay of neutral pions from measured π^0 spectrum \Rightarrow Heavier mesons $(\eta, \eta', \rho, \omega, \phi)$ implemented via m_T scaling \Rightarrow Photon conversion (in beam pipe and innermost ITS layer)

• Excess of electrons wrt the cocktail comes from charm and beauty (+ J/ψ and direct radiation)

Hadronic charm

TOF (p/K/π id)

 $(\mathbf{8})$

TPC (tracking + p/K/ π id.) K π ITS (tracking+vertexing) $\begin{array}{c} \mathsf{D}^{0} \rightarrow \mathsf{K}^{-}\pi^{+} \\ \mathsf{D}^{+} \rightarrow \mathsf{K}^{-}\pi^{+}\pi^{+} \\ \mathsf{D}^{\star +} \rightarrow \mathsf{D}^{0}\pi^{+} \\ \mathsf{D}^{0} \rightarrow \mathsf{K}^{-}\pi^{+}\pi^{+}\pi^{-} \\ \mathsf{D}_{s} \rightarrow \mathsf{K}^{-}\mathsf{K}^{+}\pi^{+} \\ \mathsf{D}_{s} \rightarrow \mathsf{K}^{-}\mathsf{K}^{+}\pi^{+} \\ \mathsf{A}_{c}^{-} \rightarrow \mathsf{p}\mathsf{K}^{-}\pi^{+} \end{array}$

D meson reconstruction

- Analysis strategy: invariant-mass analysis of fullyreconstructed topologies originating from displaced vertices
 - Build pairs/triplets/quadruplets of tracks with correct combination of charge signs and large impact parameters
 - Particle identification from TPC and TOF to reject background (at low pt)
 - Calculate the vertex (DCA point) of the decay tracks
 - Require good pointing of reconstructed D momentum to the primary vertex

D mesons: selection tools

Tracking and vertexing performance is crucial

 \Rightarrow Inner Tracking system (ITS) with 6 Si layers

- Two pixel layers at 3.9 cm (closest barrel layer at LHC) and 7.6 cm.
- ⇒ Track impact parameter resolution is 75µm at 1 GeV/c and is well described in MC

✓ Also the mass dependence is well understood

16

 $D^0 \rightarrow K^- \pi^+$

- Signals from 10⁸ events
 ⇒ 7 p_t bins in the range 1<p_t<12 GeV/c
- Selection based mainly on cosine of pointing angle and product of track impact parameters $(d_0^{K} \times d_0^{\pi})$

 $D^+ \rightarrow K^- \pi^+ \pi^+$

- Signals from 10⁸ events
 ⇒ 6 p_t bins in the range 2<p_t<12 GeV/c
- Selection based mainly on cosine of pointing angle and $\mathsf{D}^{\scriptscriptstyle +}$ decay length

- Signals from 0.85.10⁸ events
 ⇒6 p_t bins in the range 2<p_t<12 GeV/c
- Strategy: topological selection of D⁰, attach a pion and build $\Delta m = m_{K\pi\pi} m_{D^0}$ spectra

Other channels

From signals to cross-sections

 D^0 and D^+ : $d\sigma/dp_+$

- From an integrated luminosity of 1.4 nb⁻¹
 ⇒~20% of 2010 statistics
- Measured p_t differential cross sections described by pQCD predictions (FONLL and GM-VFNS)

Looking forward to PbPb

Entries / 10 MeV/c² 00005

18000

16000

14000

12000

Detector is well performing!

First D-meson signals observed!

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:29:52 Fill: 1482 Run: 137124 Event: 0x000000042B1B693

Conclusions

- ALICE demonstrated excellent capabilities for open heavy flavor physics at the LHC
 - ⇒ Excellent electron and hadron particle identification
 - High resolution on vertex and track impact parameter
 - ⇒ Precise tracking down to low pt
- First results on p_t differential cross-sections:

muons from c and b at forward rapidity

 \Rightarrow D mesons at midrapidity

in agreement with the pQCD predictions

- Ongoing:
 - Study of systematics on the semi-electronic channel
 - Data (impact parameter) based methods to separate charm and beauty contributions in D meson and electron analyses
 - Extension of the measured differential cross-section to lower and higher p_t
 - ⇒ Analysis of Pb-Pb data sample

Beauty at the LHC

Heavy-flavours in ALICE

• ALICE channels:

⇒electronic (|η|<0.9)
 ⇒muonic (-4<η<-2.5)
 ⇒hadronic (|η|<0.9)

• ALICE specific features:

- \Rightarrow low- p_{T} region
- central and forward rapidity regions
- ⇒Both c and b
- Precise vertexing in the central region to identify D (cτ ~ 100-300 μm) and B (cτ 500 μm) decays

Inner Tracking Syst

• 6 cylindrical layers of silicon detectors:

Layer	Technolog	Radius (cm)	±z (cm)	Spatial resolution (µm)	
	Y			rø	Z
1	Pixel	4.0	14.1	12	100
2	Pixel	7.2	14.1	12	100
3	Drift	15.0	22.2	38	28
4	Drift	23.9	29.7	38	28
5	Strip	38.5	43.2	20	830
6	Strip	4 3.6	48.9	20	830

L= 97.6 cm

provide also dE/dx for particle idetification

R= 43.6 cm

, Silicon Pixel Detectors (2D)

Silicon Drift Detectors (2D)

Silicon Strip Detectors (1D)

Time Projection Chamber

Main tracking detector HV electrode (100 kV) 0 field cage Characteristics: ⇒R_{in} 90 cm readout chamber $\Rightarrow R_{ext}$ 250 cm ⇒Length (active volume) 500 cm -0.9 < η < ⇒Pseudorapidity coverage: 0.9 Azimuthal coverage: 2π ⇒# readout channels ≈560k **88** μ**s** ⇒Maximum drift time: 90% Ne \Rightarrow Gas mixture: $10\% CO_{2}$ • Provides: ⇒Many 3D points per track ⇒Tracking efficiency > 90% \Rightarrow Particle identification by dE/dx ✓ in the low-momentum region \checkmark in the relativistic rise

Time Of Flight

- Multigap Resistive Plate Chambers
- Characteristics:

 \Rightarrow R_{in}370 cm \Rightarrow R_{ext}399 cm \Rightarrow Length (active volume)745 cm \Rightarrow # readout channels \approx 160k \Rightarrow Pseudorapidity coverage: $-0.9 < \eta < 0.9$ \Rightarrow Azimuthal coverage: 2π

Provides:

⇒pion, Kaon identification (with contamination <10%) in the momentum range 0.2-2.5 GeV/c

proton identification (with contamination <10%) in the momentum range 0.4-4.5 GeV/c

Muon trigger effect

MB vs. muon trigger

- The shape of spectra (with trigger match) is the same in Minimum Bias (MB) and Muon triggered events
- Using Muon trigger to get larger statistics
- MB triggers used for cross-check and normalization

Heavy flavor single muons: efficiency

Efficiency > 87% for p_t>2.5 GeV/c

Estimate the fraction of primary muons from data

 The collision occurs in the beam crossing region, which has a gaussian profile with

⇒ Narrow width in the transverse plane (σ_{xy} ≈50-100 µm) ⇒ Wider (σ_z ≈5 cm) along the beam direction

• Exploit the fact that the probability that an hadron decays before reaching the absorber (i.e. the probability of having a decay background muon) is proportional to the distance between the interaction vertex and the absorber

Electron identification in TPC

TPC signal projection p [GeV/c] TPC Signal [a.u.]

Electron efficiency

37

D⁰: data vs. MC

D⁺: data vs. MC

D⁰ and **D⁺**: systematics

- Total systematic 20-40% pt-dep. + 10% on normalization.
- Main systematic error: B feed-down from FONLL+MC
 - Two methods considered (subtraction of D from B, fraction of prompt D)
 - ⇒ To be reduced using data driven method with full 2010 statistics

D* efficiency and yield

- Only statistical error
- Shape compares well with pQCD (FONLL)

D meson ratios

 D⁰/D⁺ ratio in agreement with previous experiments at lower energy

D meson ratios

 D⁰/D* ratio in agreement with previous experiments at lower energy