Heavy flavour physics in ATLAS

Natalia Panikashvili University of Michigan, US On behalf of ATLAS collaboration

"Winter Workshop on Recent QCD Advances at the LHC " Les Houches, France, 13 – 18 February, 2011

Outline

- ATLAS detector status
- Initial results on B-physics
 - Observation of J/ψ
 - Measurements of inclusive J/ψ production and nonprompt to prompt ratio
 - Observation of Y system
 - Observation of $B^{\scriptscriptstyle\pm} \xrightarrow{} J/\psi~K^{\scriptscriptstyle\pm}$
 - Observation of D*, D+, D_s
- Planned ATLAS B-physics measurements

ATLAS detector status & online luminosity

The detector operated with high efficiency

Subdetector	# Channels	% operational
Pixels	80 M	97.3%
SCT Silicon Strips	6.3 M	99.2%
TRT	350 k	97.1%
LAr EM Calorimeter	170 k	98.1%
Tile calorimeter	9800	96.9%
Hadr. endcap LAr cal.	5600	99.9%
Forward LAr cal.	3500	100%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trig.	370 k	99.5%
LVL1 Muon TGC trig.	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Ch.	31 k	98.5%
RPC Barrel Muon Ch.	370 k	97.0%
TGC Endcap Muon Ch.	320 k	98.6%

Peak luminosity	2.07 x 10 ³² cm ⁻² s ⁻¹
LHC delivered	48.1pb ⁻¹
ATLAS recorded	45 pb⁻¹
Systematic uncertainty	11%

Dimuon spectrum – 40pb⁻¹

- Combined opposite sign muons with: $p_T(\mu) > 2.5 \text{ GeV}$
- High Level Trigger (EF) with p_T threshold of 15 GeV

J/ψ candidate

J/ψ observation with $41pb^{-1}$

- At least one primary vertex with 3 tracks associated
- Quality cuts on the ID tracks to remove the badly measured muons
- Opposite charge muon pairs with successful vertex fit
- One of the muon candidates needs to be combined 2/17/2011

Muon spectrometer Calorimeters Inner De

Tagged muon

First B physics measurements

- Differential J/ ψ production cross section in bins of p_T and rapidity (9.5 nb⁻¹)
- Ratio of non-prompt to prompt production cross-section vs. p_T (17.5 nb⁻¹)

ATLAS-CONF-2010-062

Differential J/ ψ production cross-section

Each $J/\psi \rightarrow \mu^+ \mu^-$ candidate is multiplied by weight to recover true number of J/ψ

Detector Acceptance

Detector Acceptance is defined as the probability to have both μ from J/ ψ in the detector volume

Map of reconstructed J/ ψ

Detector Acceptance

Acceptance map is determined by MC events with generator level cuts: $p(\mu) > 3.5$ GeV for $|\eta| < 2$, $p(\mu) > 8$ GeV for $2 < |\eta| < 2.5$

• MC simulated with 0 polarization

2/17/2011

Kinematic Acceptance - Spin Alignment

- Polarization is unknown
 - How to take into account the polarization effect?
- Perform the measurement under the assumption of a different spin alignment scenario: a flat, one longitudinal and three 3 transverse orientations
 - use extremes to determine the "envelope" of possible values (ATLAS, CMS, ALICE)
- Assign an appropriate systematic uncertainties

Reminder

• J/ ψ acceptance $\propto \phi^*$, θ^*

$$\frac{d^2 N}{d\cos\theta^{\star}d\phi^{\star}} \propto 1 + \lambda_{\theta}\cos^2\theta^{\star} + \lambda_{\phi}\sin^2\theta^{\star}\cos 2\phi^{\star} + \lambda_{\theta\phi}\sin 2\theta^{\star}\cos\phi^{\star}$$

- $\phi^*,\,\theta^*\propto$ the spin alignment of J/ψ
- Spin alignment of J/ψ depends on the production mechanism

2/17/2011

Kinematic Acceptance - Spin Alignment

Difference in the acceptance depending on the different spin alignment scenario

Acceptance maps with Flat & Longitudinal hypothesis

Trigger & muon reconstruction efficiencies

- The trigger efficiency is calculated relative to the offline reconstruction efficiency
 - using minimum bias data the p_T η map of the single muon efficiencies for the EF trigger is constructed
 - the average efficiency for the EF trigger is calculated for each of the analysis bins by populating the bins with MC prompt $J/\psi \rightarrow \mu^+\mu^-$ simulated events

p_T(J/ψ) [GeV]	efficiency (%)
> 6	95
< 6	57 – 63

- The muon reconstruction efficiency
 - Determined by the fully simulated prompt $J/\psi \rightarrow \mu\mu$ MC events

J/ψ candidates

Perform the ML unbinned fit to derive N of J/ ψ candidates

J/ψ candidates: reweighted invariant mass

Differential J/ ψ production cross-section

- Shape of distribution is in good agreement
- ATLAS Pythia retuning ongoing to correct the factor 10 discrepancy

ATLAS preliminary results compatible with other LHC experiments Forward rapidities: ALICE ATLAS CMS LHCb

Non-prompt to prompt J/ψ cross-section ratio

$$\mathcal{R} \equiv \frac{\sigma(pp \to b\bar{b}X \to J/\psi X')}{\sigma(pp \to J/\psi X'')_{\text{prompt}}}$$

- The pseudo-proper decay time separates prompt from non-prompt candidates: τ = L_{xy}M(J/ψ)/p_T(J/ψ)
 L_{xy} – projection of the flight distance of the J/ψ onto its p_T
- Simultaneous fit
 - Invariant mass
 - Signal: Gaussian function
 - Background: Linear function
 - Proper time
 - Signal: resolution + exponential function ⊗ resolution

Fit models

18

Non-prompt to prompt J/ψ cross-section ratio

- Measurements in agreement with the Pythia expected value within the statistical and systematic uncertainties
- Systematic uncertainties estimated modifying:
 - resolution model in the time fit (Gaussian \rightarrow double Gaussian)
 - background model in the mass fit (using a polynomial)
 - fitting procedure

2/17/2011

Upsilon observation - Y(1s,2s,3s) \rightarrow µµ

Two muons in the barrel region

Observation of the $B^{\pm} \rightarrow J/\psi(\mu^{+}\mu^{-}) K$

ATLAS-CONF-2010-098

Dimuon in the J/ ψ mass range combined with a third track (kaon mass assigned)

- Fitted to a common vertex, with J/ψ mass on dimuon
- Background suppression transverse decay length
 2/17/2011

D mesons

Production of charm mesons is one of the first hard processes to be measured at LHC

 $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$

ATLAS-CONF-2010-034

22

D mesons

 $D^+ \rightarrow K^- \pi^+ \pi^+$

Mesons	PDG Mass	ATLAS Mass
	(MeV)	(MeV)
D^{\pm}	1869.60 ± 0.16	1871.8 ± 1.1
D_{s}^{\pm}	1968.47 ±0.33	1971.5 ± 4.6

A heavy ion collision with a candidate $J/\psi \rightarrow \mu^+\mu^-$

Future Measurements 2011/2012

- Heavy quarkonia:
 - upsilon and $\psi(2s)$ differential cross sections
 - J/ψ , $\psi(2s)$ and Υ spin alignment
 - − ψ (2S), χ_c , $\Upsilon \rightarrow J/\psi \pi^+\pi^-$ observation, cross sections
- B hadron physics
 - Differential production cross sections for B±, Bs, Bs through exclusive decays
 - Inclusive B-hadrons lifetime
 - Exclusive B-hadron lifetime
 - Bs mixing double lifetime and helicity amplitudes
 - Search for additional sources of CP-violation with ${\sf B}_{s} \mbox{ \rightarrow } {\sf J}/\psi \ensuremath{\,\varphi}$
 - Limits on branching ratios for rare B-decays: $B_s \rightarrow \mu\mu$ and $B_d \rightarrow \mu\mu X$