Quarkonia Measurements in ALICE Experiment (in the first year of p+p collisions at $\sqrt{s} = 7$ TeV)

WooJin J. Park

for the ALICE Collaboration

Winter Workshop on Recent QCD Advances at the LHC, Les Houches

Contents

• Introduction

- Physics motivation
- ALICE experiment and detector configuration

Analysis strategies and details

- Particle identification and selection of e and $\boldsymbol{\mu}$
- Efficiency calculation
- Signal extraction
- Systematic errors estimation

<u>Results and discussion</u>

Summary and outlook

Introduction : Quarkonia in A+A Collisions

 J/ψ dissociation by color screening could serves as a QGP signature [Phys. Lett. B 178, 416 (1986)]

- Two big experimental suprises
 - similar suppression at SPS and RHIC
 - stronger suppression at forward rapidity

$$R_{AA}^{J/\psi} = \left(\frac{dN_{J/\psi}^{AuAu}}{dy} \right) / \left(N_{coll} \cdot \frac{dN_{J/\psi}^{pp}}{dy} \right)$$

suppression quantified by nuclear modification factor

Physics Motivation : J/ψ production at LHC

- Suppression or enhancement?
 - Debye screening vs charm thermalization
- Distinguishable differences @ LHC
 - ~30 times higher \sqrt{s} than RHIC (14 times so far)
 - unexplored x_{Bj} region (10⁻³~10⁻⁵)
 - larger statistics
 - $\sigma_{cc} \sim 10 \times RHIC$
 - $\blacktriangleright \ \sigma_{bb} \sim 100 \times RHIC$
- Secondary J/ψ from B decay

Introduction : Quarkonia in p+p collisions

- Reference for heavy ion data
- Still many theoretical uncertainties
 - NRQCD (COM) fails in predicting polarization (CDF Run II)
 - CSM (+ s-channel cut) reproduces $d\sigma/dy$ (to some extent) and polarization
 - but still over-estimates at forward rapidity

Introduction : Quarkonia in p+p collisions

- Reference for heavy ion data
- Still many theoretical uncertainties
 - NRQCD (COM) fails in predicting polarization (CDF Run II)
 - CSM (+ s-channel cut) reproduces $d\sigma/dy$ (to some extent) and polarization
 - but still over-estimates at forward rapidity

ALICE Detector

A Large Ion Collider Experiment

Inner Tracking System (ITS)

- six layers of silicon detectors
- determination of primary and secondary vertex
- PID and tracking of low momentum particles
- help to improve transverse momentum measurement of the TPC
- help to reject conversion background by requiring hit(s) in first two layers
- impact parameter resolution close to the designed value

Time Projection Chamber (TPC)

Muon Spectrometer

- 16 m long, $p_{\mu} \gtrsim$ 4 GeV/c , 2.5 < η < 4.0
- front absorber (carbon, concrete and steel), reject primary hadrons
- dipole magnet (3 $T \cdot m$) : bending plane in y direction
- tracking chambers (5 stations of 2 Cathode Pad Chamber planes, ~100 m²)
- muon trigger (4 RPC planes)

Data Analysis Details

J/ψ measurements in ALICE

- in ALICE :
 - e^+e^- channel in the central barrel (|y| < 0.9)
 - $\mu^+\mu^-$ channel in the forward muon spectrometer (2.5 < y < 4.0)

Analysis Strategy for Quarkonium Measurement

	e+e- analysis	µ⁺µ⁻ analysis	
Tracking	ITS+TPC+(TRD)	muon tracking chamber	
PID	dE/dx in TPC TOF and TRD (future)	front absorber / iron wall muon trigger detector	
Selecting good tracks	pT > IGeV, # of TPC cluster>90, etc	I muon matching the trigge R _{abs} cut, etc	
Signal extraction	direct bin counting	Crystal-Ball shape + double gaussian	

- Efficiency calculation
 - based on simulation, realistic (CDF scaled) p_T and y distribution adopted
- <u>Systematic error estimation</u>
 - cut variation, two extreme polarizations, MC vs data comparison

Particle Identification

- <u>e⁺e⁻ analysis</u>
 - TPC based PID in this analysis (dE/dx distribution)
 - 3σ bands of π and p line are excluded

<u>µ+µ- analysis</u>

- front absorber rejects primary hadrons
- iron wall removes hadrons emerge from the front absorber

ALICE uses almost all known PID techniques

Kinematics and Efficiency - e⁺e⁻ channel

- CDF extrapolated p_T distribution used
- |y| < 0.9 to avoid detector edge effect, $p_T > 1$ GeV to reject conversions
- ALICE can measure J/ψ p_T down to p_T=0

Efficiency - $\mu^+\mu^-$ channel

• Realistic y and p_T distributions of J/ψ was used :

- $pT \rightarrow CDF$ extrapolation
- y \rightarrow CEM calculation

Invariant Mass Distributions - e⁺e⁻ channel

Background subtraction

- like-sign subtraction method

 $N_{signal} = N_{+-} - 2\sqrt{N_{++} \times N_{--}}$

- normalized wrt the range [3.2,4.0]
- residual background due to correlated charm components

<u>Signal extraction</u>

- bin counting
- integral range [2.92, 3.16] GeV/c²
- 69% of total J/ψ's (MC line)

Invariant Mass Distributions - $\mu^+\mu^-$ channel

<u>Signal fitting</u>

- Crystal-Ball function for signal
- two exponentials for the background
- $\psi(2S)$ signal is also well visible
- for the cross section
 - statistics for this analysis

$$N_{J/\psi} = 1909 \pm 78$$

S/B (2.9

Invariant Mass distributions in 7 pT bins

- Differential distributions refer to a data sample corresponding to L=11.6 nb⁻¹
- J/ψ peaks are clearly visible in each pT bin

Systematic Errors

channel	e⁺e⁻		μ⁺μ⁻		
signal extraction	8%		7.5%		
acceptance input	1%		2%		
trigger efficiency	0%		4%		
reconstruction	10%		2%		
luminosity	10%				
branching ratio	1%				
total error	18%		13.5%		
polarization frame	λ =-1	$\lambda = +1$	λ =-1	$\lambda = +1$	
Collins-Soper	+25%	-12%	+31%	-15%	
helicity	+20%	-10%	+22%	-10%	

preliminary values!

Differential Cross Section : $d\sigma_{J/\psi}/dy$

• J/ψ production cross section measured in a broad rapidity range

Differential Cross Section : $d\sigma_{J/\psi}/dp_T$

- Syst. error is dominated by polarization
 - two extreme scenarios have been chosen : α=±1

• Very good agreement with the LHCb result in the same rapidity range

Comparison with two models

- Model calculations:
 - R.Vogt, Phys. Rev. C 81 (2010) 044903
 - J.P. Lansberg, arXiv:1006.2750
- p_T-integrated cross section 1.6<y<2.4 from CMS (arXiv:1011.4193)

\sqrt{s} -dependence of inclusive J/ ψ production

- Open charm NLO calculation, normalized to the CDF point
- Follows the trend of \sqrt{s} -dependence for the inclusive J/ψ cross section

J/ψ in Pb+Pb data

- ~2.6M MB events
- Crystal-Ball shape (signal) + 2 exponential (background)

Summary and Outlook

<u>Summary</u>

- ALICE detector and analysis details introduced
- ALICE can cover J/ψ p_T down to p_T=0
- first results on J/ψ production in e⁺e⁻ and $\mu^+\mu^-$ channels presented
- differential distribution in p_T and rapidity of the inclusive J/ψ shown

• Outlook

- electron trigger (e.g. track p_T>~2 GeV) can significantly increase the statistics
- secondary J/ψ is under study
- J/ψ polarization measurement will follow with high statistics
- J/ψ measurement in Pb+Pb data is ongoing

Backup Slides

Collected Data

• Data sample:

- Integrated luminosity = 4.0 nb⁻¹ and 13.6 nb⁻¹ for e^+e^- and $\mu^+\mu^-$, respectively

$dN_{J/\psi}/dp_T$ in the mid-rapidity

- Preliminary pT differential distribution, compared to CEM calculation
- Measured spectrum is softer than the calculated one

$< p_T > and < p_T^2 > from J/\psi \rightarrow \mu + \mu$ -

Winter Workshop on Recent QCD Advances at the LHC, Les Houches

Collins-Soper (CS): bisector of the angle between proj. and (-) target in the quarkonium C.M. frame.

Helicity (HE): Direction of the quarkonium in the C.M. frame of the collision.

But don't forget the angle!