Jet production in Pb-Pb collisions in ATLAS

Martin Rybář for the ATLAS collaboration

Winter Workshop on Recent QCD Advances at the LHC Les Houches, Feb 13 -18th, 2011

Heavy lons at the LHC

the heavy ion programme at the LHC started on Nov 4th 2010

RHIC -
$$\sqrt{S_{NN}} = 200$$
 GeV
LHC - $\sqrt{S_{NN}} = 2.76$ TeV

- 13 times larger energy → a new regime in HI physics
- the highest energy density ever achieved
- new probes like Z bosons and jets topic of this talk
- full jet reconstruction possible

The ATLAS Detector

- ATLAS is a general-purpose p-p experiment, but the detector can be very well used for heavy ion physics!
- large pseudorapidity coverage and full azimuthal acceptance
- fine granularity and longitudinal segmentation
- precise inner detector in a 2T field
- extensive system of muon chambers placed inside a 1T field

ATLAS Detector Status during HI Run

- ATLAS detector was fully operational
- 9.17 μb⁻¹ of Pb-Pb were recorded
- data recording efficiency > 95%
- fraction of good quality data > 99%

Excellent data quality during first HI run!

total E_T measurement \rightarrow impact parameter number of collisions and participants

 characterize centrality by percentile of total cross-section using total E_T measured in forward calorimeter (3.2<|η|<4.9)

4/18

Jets in ATLAS

- jet production well described by a NLO pQCD
- ATLAS has already measured jets in p-p collisions
- jets are ideal for tomography of medium

Jets in HI Collisions

ATLAS has a very good ability to perform the full jet reconstruction

Jet Reconstruction at ATLAS

- two reconstruction strategies: cone and anti-k_t algorithm (0.2, 0.4, 0.6)
- ➡ anti-k, with R=0.4 for main analysis
- input: calorimeter towers 0.1 x 0.1 ($\eta x \phi$)
- event-by-event background subtraction:
 - → anti-k, reconstruction prior to a background subtraction
 - \Rightarrow underlying event estimated for each longitudinal layer and η slice separately
- we exclude jets with $D = E_{T \text{ tower}}^{max} / \langle E_{T \text{ tower}} \rangle > 5$ to avoid biasing subtraction from jets but no jet rejection based on D

Jets in Peripheral HI Collisions

Jets in Central HI Collisions

Jets in Central HI Collisions

Dijet analysis

- events selected with minimum bias trigger (MBTS and ZDC)
- anti-k, with R=0.4
- jets calibrated to the hadronic energy scale using H1-style cell weighting
- measurement of an azimuthal angle separation Δφ
- Selection criteria:
 - leading jet: E_{τ_1} >100 GeV, |η|<2.8 → 1693 events in 1.7 µb⁻¹
 - sub-leading jet: highest E_{τ} jet in opposite hemisphere: Δ ϕ_{12} >π/2, E_{τ_2} >25 GeV, $|\eta|$ <2.8 → 5% of selected events without sub-leading jet
- dijet imbalance quantified by asymmetry variable:

$$A_{J} \equiv \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$$

Dijet asymmetry in Pb+Pb collisions

- comparison of Pb-Pb data, p-p data and MC Hijing+Pythia (Hijing without quenching, Pythia dijets at $\sqrt{s} = 7$ TeV)

the first ATLAS HI data paper: arXiv:1011.6182, Phys. Rev. Let. 105, 252303

increasing centrality \implies increasing fraction of dijets with large asymmetry $\implies \Delta \phi_{12}$ still peaked at π

Cross Checks: Jet Position

- no holes or hot spots in detector
 - small impact of η cut —

Cross Checks: Subtraction

Mean subtracted energy as a function of asymmetry

- no asymmetry dependence
- amount of subtracted energy for leading and sub-leading jet is comparable

asymmetry distribution for 3 different cone sizes

- increasing asymmetry with reducing cone size
- opposite effect expected if asymmetry develop due to a subtraction

Jet shapes

core/total ratio for leading jet as a function of centrality

- leading jet: agreement between data and MC for all centralities
- sub-leading jet: agreement for peripheral events but broadening in more central collisions

Other Cross Checks

- event quality and calorimeter signal quality
- asymmetry visible also at unsubtraced and uncalibrated energy level and at the level of tracks
- no energetic muons in high asymmetry events
- no significant missing E_{τ} in high asymmetry events
- different jet algorithms and subtraction methods
- and many others...

Conclusions

- heavy ion programme at LHC started in Nov 2010
- excellent performance of LHC and ATLAS!
- a lot of interesting results but analysis still ongoing
- ATLAS published first observation of large dijet asymmetry in heavy ion collisions
- explanation by jet quenching is natural but a lots of work needed to understand the effect
- many of cross checks have been done and the effect is still here...

η distribution of leading and sub-leading jets

• no dependence on η and on dijet asymmetry

Asymmetry versus $\boldsymbol{\phi}$ distribution for leading jet

no dependence on φ

Subtraction Cross Check: Jet Edge E_T

muon spectrum:

no dependence on centrality

Subtraction Cross Check: different subtraction methods

 $[\]Delta \phi$

Cross Check: Muons

asymmetry distributions for

muon spectrum:

no correlation between high p₁ muons and high asymmetry dijets

uncorrected jet E_T spectrum in minimum-bias Pb+Pb, anti- k_T , R = 0.4

Pb+Pb, anti- k_T , R = 0.4, matching to truth jet: $\Delta R < 0.2$

