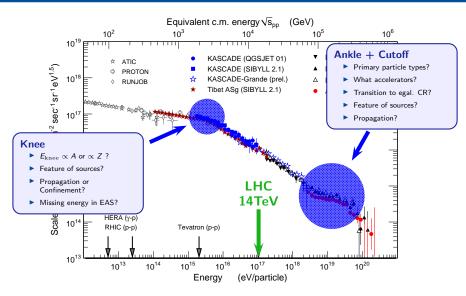
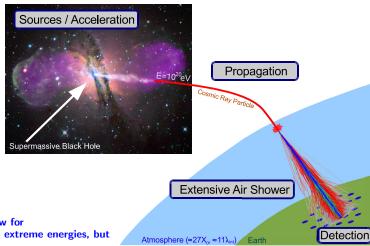


R. Ulrich, D. d'Enterria, T. Pierog


Winter Workshop on Recent QCD Advances at the LHC, February 2011

Cosmic Ray Overview and Open Questions

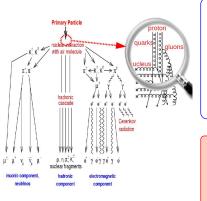
L


Cosmic Ray Overview and Open Questions

- → LHC first accelerators above the knee!
- \rightarrow LHC only factor of < 10 in \sqrt{s} away from ankle !

1

Cosmic Rays and Extensive Air Showers



Observational window for astrophysics at most extreme energies, but

- No direct detection of cosmic rays
- Extensive Air Showers (EAS)
- Need to understand ground based EAS observables
- Very good EAS models required!

 \Rightarrow Interactions up to $\sqrt{s} \sim 500 \text{ TeV}$

Modelling Interactions in Extensive Air Showers

Requirements and Problems:

- ▶ Interactions up to $\sqrt{s} \sim 500 \, \text{TeV}$
 - → Far beyond accelerator energies...
- ► Mainly soft physics + diffraction: **forward region**
 - → Difficult to instrument...
 → Only fixed target at lower energies...
- ____
- ► Target is air: p-air, π -air, K-air, A-air, . . .
 - → Typical target very different from air: Nuclear effects must be considered...

Ingredients:

- ► Theory: pQCD (hard) + Gribov-Regge (soft)
- ► A lot of phenomenology: Diffraction, String fragmentation, Saturation, Remnants, Nuclear effects, ...

Older models:

Glauber based, different mostly in remnants+diffraction, for example: QGSJet01 (Kalmykov, Ostapchenko) SIBYLL (Engel, Gaisser, Lipari, Stanev)

Recent models:

QGSJetII (Ostapchenko) Theory++, Optimized for cosmic rays EPOS (Werner, Pierog) Phenomenology++

Optimized for LHC, RHIC (and cosmic rays)

3

Cosmic Ray Models and LHC Data

we can only show here a very small subset of all data of ALICE, ATLAS, CMS, LHCb $\,$

read
arXiv:1101.5596v2 [astro-ph.HE] or also
arXiv:1101.1852v1 [hep-ex]
for more details and references

Overview and Prospects

Hard and soft particle production, string/remnant fragmentation: General characteristics of hadronic multiparticle production.

⇒ all detectors, especially detailed central measurements

Projectile remnants, forward fragmentation, leading hadrons, inelasticity

Most critical for energy transport in air showers!

 \Rightarrow LHCf, Zero Degree Calorimeters

Diffraction: Above LHC energy, > 40 % of interactions are diffractive.

⇒ Totem, CASTOR, ...

Cross sections (diffractive, elastic, inelastic and total): Extremely important for the development and fluctuation of air shower cascades!

 \Rightarrow Totem

Gluon saturation, non-linear QCD: x values down to 10^{-8} in UHECR, saturation effects studied at LHC via $\langle p_{\rm T} \rangle$, correlations, forward particle production, etc.

⇒ ATLAS, ALICE, CMS, ...

Overview and Prospects

Hard and soft particle production, string/remnant fragmentation: General characteristics of hadronic multiparticle production.

⇒ all detectors, especially detailed central measurements

Projectile remnants, forward fragmentation, leading hadrons, inelasticity

Most critical for energy transport in air showers!

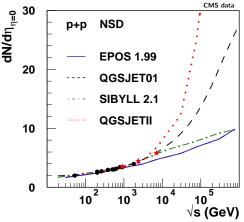
 \Rightarrow LHCf, Zero Degree Calorimeters

Diffraction: Above LHC energy, > 40 % of interactions are diffractive.

⇒ Totem, CASTOR, ...

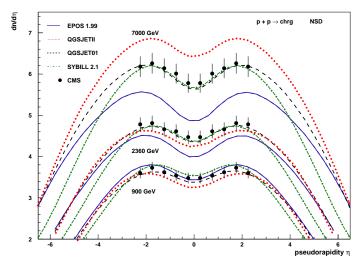
Cross sections (diffractive, elastic, inelastic and total): Extremely important for the development and fluctuation of air shower cascades!

 \Rightarrow Totem

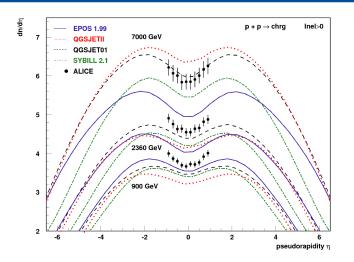

Gluon saturation, non-linear QCD: x values down to 10^{-8} in UHECR, saturation effects studied at LHC via $\langle p_{\rm T} \rangle$, correlations, forward particle production, etc.

⇒ ATLAS, ALICE, CMS, ...

So far only central detectors published data up to $7\,\text{TeV}$

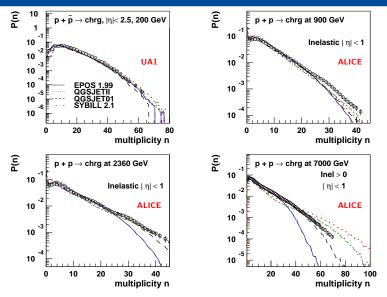

Charged Hadron Density at Midrapidity

Good and fast cross-check for overall data-MC agreement

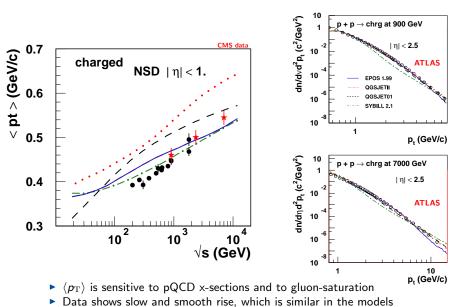

- Models describe LHC data well
- ▶ The older models (QGSJet/SIBYLL) perform better
- ▶ Divergence starts at \sim 7 TeV
- ⇒ Data at 14 TeV very important!

Hadron Pseudorapidity Densities, NSD

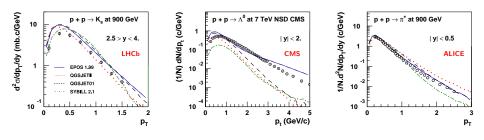
- ▶ The non single diffractive data is well reproduced by SIBYLL/QGSJet01 for $|\eta| < 2.5$
- ▶ Model differences increase towards higher pseudorapidities
- ⇒ Forward tracking data important!


Hadron Pseudorapidity Densities, INEL

- ▶ The inelastic event selection is less well reproduced by models
- ► Agreement of models with data not perfect...
- ightarrow Clear that models have to be improved

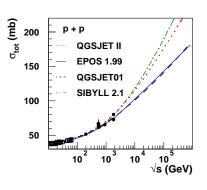

8

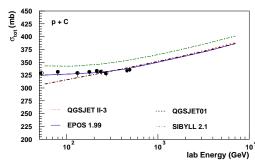
Multiplicity Distributions


- lacktriangle Sensitive to diffraction (low $N_{
 m ch}$) and multiparton interactions (high $N_{
 m ch}$) modeling
- ightharpoonup Worse data-models agreement (ightharpoonup all models are tuned to low energy data)

Transverse Momentum

- No important new effects yet visible (saturation, collective effects)

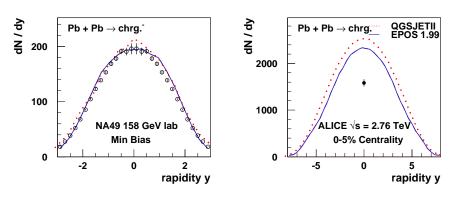

Transverse Momentum (Identified) Spectra



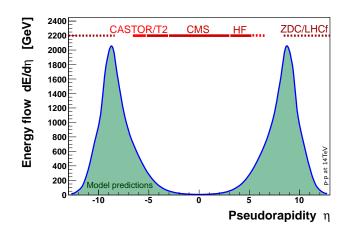
- Models have trouble to describe details of the production of mesons and baryons. EPOS is acceptable.
- ⇒ Relevant for the muon content of air showers

Cross Sections

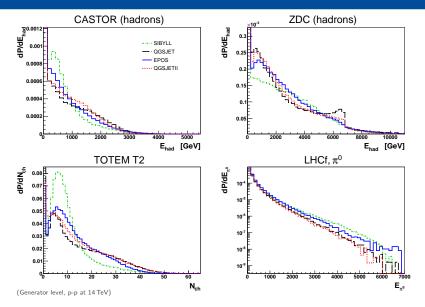
▶ Total p-p cross section (including elastic & diffractive contributions) measurable by TOTEM and ATLAS-ALFA



Extensive Air Showers: p-Air, A-Air, π -Air, ...


⇒ Important to study not only p-p, but p-A and A-A collisions at the LHC

Pb-Pb Hadron Pseudorapidity Density


⇒ Models overpredict particle multiplicity at 2.76TeV: Coherence, gluon saturation effects well implemented ?

Forward Particle Production

- ▶ Most primary energy is transported into the very forward direction
- ⇒ Crucial for air showers is particle production in **forward direction!**TOTEM, LHCf, CASTOR, ZDCs, HF, FCal, ... detectors

Particle Production in Forward Direction

- Models differ significantly where it matters most for air showers
- ▶ Model differences measurable with current forward detectors

Summary

▶ LHC minimum-bias data so far mostly bracketed by CR models

		_			_								
	Model	QGSJET01			QGSJETII			SIBYLL 2.1			EPOS 1.99		
	\sqrt{s} (TeV)	0.9	2.36	7	0.9	2.36	7	0.9	2.36	7	0.9	2.36	7
$dN_{ch}/d\eta _{\eta=0}$		1	✓	✓	1	✓	over	1	✓	✓	1	under	under
$\langle p_{\perp} \rangle$		over	over	✓	over	over	over	✓	under	under	✓	✓	✓
$P(N_{ch} < 5)$		over	over	under	over	over	over	over	over	over	✓	✓	✓
$P(N_{ch} > 30)$		✓	under	under	✓	✓	over	over	✓	over	under	under	under

- No surprising features or changes found in data with respect to model predictions
- ⇒ Very unlikely that the *knee* is caused by interaction physics
- Models diverge rather rapidly towards higher energies and higher pseudorapidities
- \Rightarrow Data at $\sqrt{s} = 14 \text{ TeV}$ crucial for model tuning up to GZK-cutoff energies
- ⇒ Forward detectors most relevant.

Most important for cosmic ray applications are: low luminosity runs, high energy, p-p, p-A (light)