<u></u>

W and Z/ γ^* production in p-p collisions with ATLAS

Manuella G. Vincter (Carleton University) on behalf of the ATLAS Collaboration

Measurements of the inclusive W and Z as well as W+jets and Z+jets production cross sections at hadron colliders constitute important tests of the Standard Model

- will provide new constraints on the parton distribution functions
- will allow for precise tests of perturbative QCD
- Also constitute significant background in other SM or BSM processes
- Need to measure them well!

This presentation: ATLAS results of leptonic production of

- W⁺, W⁻ and Z/γ* (JHEP12(2010)060)
- W charge asymmetry (JHEP12(2010)060)
- W+jets (arXiv:1012.5382)
- Z /γ*+jets (ATLAS-CONF-2011-001)

Data presented here collected over a five-month period, from March to August 2010

- Centre-of-mass energy $\sqrt{s} = 7$ TeV p-p collisions. Integrated luminosity:
 - 0.32 pb⁻¹: W \rightarrow ev, W \rightarrow µv, Z \rightarrow ee, Z \rightarrow µµ
 - 1.3 pb⁻¹ : W(→ev)+jets, W(→ μ v)+jets, Z(→ee)+jets, Z(→ μ μ)+jets
- Hardware-based level-1 trigger: E^e_T>10GeV (or 14GeV), p^μ_T>6 GeV (or 10 GeV)
- Pile-up varied from zero to about two extra interactions per event.

Identification/reconstruction of leptons and jets

Electron and muon identification criteria similar for W incl, W +jets, Z incl, Z+jets

- Some further optimisations in W,Z+jets analysis to reduce QCD background
- e: $E_T > 20 \text{ GeV}$, $|\eta| < 2.47$ (excluding overlap region 1.37-1.52)
 - Identified using both calorimeter and inner (tracking) detector
- μ: p_T>20 GeV, |η|<2.4</p>
 - Identified using both inner detector and muon spectrometer
 - Additional track-based isolation requirements to further suppress QCD bkg

Jets (W,Z+jets analyses only):

- Anti-kT algorithm with R=0.4
- p_T>20 GeV, |η|<2.8
- p_T , η -dependent corrections for difference in calo response between e & hadrons
- Jets within $\Delta R < 0.5$ of lepton were removed
- Jets from pile-up interactions removed
 - Compare tracks associated to primary vertex to all vertices inside jet

Missing transverse energy (W incl and W+jets)

Missing transverse energy: E_T^{miss}>25GeV

- calorimeter energy inside 3D topological clusters, corrected for difference in response of calorimeter to hadrons and electrons, dead-material losses, out of cluster corrections
 - Muon channel also corrects for muon momentum

Transverse mass of the lepton- E_T^{miss} system: $m_T > 40 GeV$

Leptonic backgrounds

- $W \rightarrow \tau \nu \rightarrow I \nu \nu \nu$, $Z \rightarrow II$, $Z \rightarrow \tau \tau$, semi-leptonic decays of ttbar (I=e, μ)
 - from MC, normalised to integrated luminosity, using NNLO or NLO+NNLL σ

QCD background

- e: hadrons faking electrons, conversions, semi-leptonic heavy quark decays
- µ: semi-leptonic heavy quark decays

e.g. W+jets: fit E_T^{miss} to sum of two templates (E_T^{miss} >10GeV for e) per jet multiplicity

Signal+leptonic background template (from MC)

Yield of signal events: W,Z inclusive (L \cong 0.32pb⁻¹)

• Yield of signal events N^{sig} = N^{observed} - N^{background}

W incl: Nsig~2100 events

l	Observed	Background	Background	Background-subtracted
	candidates	$(EW+t\bar{t})$	(QCD)	signal N_W^{sig}
e^+	637	$18.8 \pm 0.2 \pm 1.7$	$14.0 \pm 2.1 \pm 7.1$	$604.2 \pm 25.2 \pm 7.6$
e ⁻	432	$14.7 \pm 0.2 \pm 1.3$	$14.0 \pm 2.1 \pm 7.1$	$403.2 \pm 20.8 \pm 7.5$
e^{\pm}	1069	$33.5 \pm 0.2 \pm 3.0$	$28.0 \pm 3.0 \pm 10.0$	$1007.5 \pm 32.7 \pm 10.8$
μ^+	710	$42.5 \pm 0.2 \pm 2.9$	$12.0 \pm 3.0 \pm 4.6$	$655.6 \pm 26.6 \pm 6.2$
μ^-	471	$35.1 \pm 0.2 \pm 2.4$	$10.9 \pm 2.4 \pm 4.1$	$425.0 \pm 21.7 \pm 5.4$
μ^{\pm}	1181	$77.6 \pm 0.3 \pm 5.4$	$22.8 \pm 4.6 \pm 8.7$	$1080.6 \pm 34.4 \pm 11.2$

Z incl: $N^{sig} \sim 180$ events (within 66 < M_{II} < 116 GeV)

l	Observed	Background	Background	Background-subtracted
	candidates	$(EW+t\bar{t})$	(QCD)	signal N_Z^{sig}
e^{\pm}	70	$0.27 \pm 0.00 \pm 0.03$	$0.91 \pm 0.11 \pm 0.41$	$68.8 \pm 8.4 \pm 0.4$
μ^{\pm}	109	$0.21 \pm 0.01 \pm 0.01$	$0.04 \pm 0.01 \pm 0.04$	$108.8 \pm 10.4 \pm 0.0$

Cross-section formalism: W,Z inclusive

$$\sigma_{W(Z)}^{\text{tot}} \cdot BR(W(Z) \to \ell \nu \ (\ell \ell)) = \frac{N_{W(Z)}^{\text{sig}}}{A_{W(Z)} \cdot C_{W(Z)} \cdot L_{W(Z)}},$$

.

- N^{sig}_{W(Z)}: number of background-subtracted events passing final selection
- L_{W(Z)}: integrated luminosity of channel (uncertainty of 11%)
- C_{W(Z)}: from PYTHIA (with some data-derived corrections). It gives the fraction of signal events surviving the selections, normalized to the signal that passes the kinematic and m_T or m_{II} cuts at the generator (Born) level.
 - It corrects for efficiency, resolution, and QED radiation effects.
- $A_{W(Z)}$: fraction of the signal that passes the kinematic and m_T or m_{\parallel} cuts at the generator level, normalized to the total sample.
 - It corrects to the total cross section.
 - This is a pure Monte Carlo quantity and is estimated using PYTHIA

Systematic uncertainties on $C_{W(Z)} \cong 0.65$ [e], 0.77 [µ]

Apart from luminosity uncertainty of 11%, dominant systematic uncertainties due to:

- Electron channel:
 - material effects in the detector, reconstruction and ID of electrons

-	Parameter		$\delta C_W/C_W(\%)$	$\delta C_Z/C_Z(\%)$	
-	Trigger efficiency		< 0.2	< 0.2	
	Material effects, reconstruction an	5.6	8.8		
	Energy scale and resolution		3.3	1.9	
	$E_{\rm T}^{\rm miss}$ scale and resolution		2.0	-	
	Problematic regions in the calorin	neter	1.4	2.7	
	Pile-up		0.5	0.2	
	Charge misidentification		0.5	0.5	
	FSR modelling		0.3	0.3	
	Theoretical uncertainty (PDFs)		0.3	0.3	
-	Total uncertainty		7.0	9.4	
Muor	n channel:	Parameter		$\delta C_W/C_W(\%)$	$\delta C_Z/C_Z(\%)$
		Trigger efficien	су	1.9	0.7
n 🛛	nuon reco efficiency	Trigger efficien Reconstruction	cy efficiency	1.9 2.5	0.7 5.0
• n	nuon reco efficiency	Trigger efficien Reconstruction Momentum sca	cy efficiency le	1.9 2.5 1.2	0.7 5.0 0.5
• n • ti	nuon reco efficiency rigger efficiency	Trigger efficien Reconstruction Momentum sca Momentum res	cy efficiency le olution	1.9 2.5 1.2 0.2	0.7 5.0 0.5 0.5
■ n ■ ti	nuon reco efficiency rigger efficiency	Trigger efficien Reconstruction Momentum sca Momentum res E ^{miss} scale and	cy efficiency le olution resolution	1.9 2.5 1.2 0.2 2.0	0.7 5.0 0.5 0.5
 n ti 	nuon reco efficiency rigger efficiency	Trigger efficien Reconstruction Momentum sca Momentum res <i>E</i> ^{miss} scale and Isolation efficie	cy efficiency le olution resolution ency	1.9 2.5 1.2 0.2 2.0 1.0	0.7 5.0 0.5 0.5 - 2.0
• n • ti	nuon reco efficiency rigger efficiency	Trigger efficien Reconstruction Momentum sca Momentum res <i>E</i> ^{miss} scale and Isolation efficie Theoretical unc	cy efficiency le olution resolution ency vertainty (PDFs)	1.9 2.5 1.2 0.2 2.0 1.0 0.3	0.7 5.0 0.5 0.5 2.0 0.3

Systematic uncertainties on A_{W(Z)}

- The acceptances from PYTHIA with the modified leading order parton distribution function set MRST LO* and the corresponding ATLAS MC09 tune
- Systematic uncertainties dominated by the limited knowledge of the proton PDFs and the modelling of the W and Z boson production at the LHC.
- Looked at:
 - Uncertainties within one PDF set: CTEQ 6.6 PDF error eigenvector sets at 90% C.L. with MC@NLO acceptance calculation
 - Compared MRST LO* with CTEQ 6.6 PDF and HERAPDF 1.0 sets
 - Compared PYTHIA vs MC@NLO with one PDF set (CTEQ 6.6)
- Estimate uncertainties on A_W is 3% and A_Z is 4%

Total inclusive cross section results ($L \cong 0.32 \text{ pb}^{-1}$)

W/Z inclusive cross-section ratios (L $\simeq 0.32 \text{ pb}^{-1}$)

Results are dominated by statistical uncertainty

W-charge asymmetry ($L \cong 0.32 \text{ pb}^{-1}$)

12

- In contrast to p-pbar collisions, cross sections for W⁺ and W⁻ production are expected to be different in p-p collisions due to different valence quark distributions
- W-boson charge asymmetry derived from inclusive cross sections prior to acceptance $A_{\ell} = \frac{\sigma_{W^+}^{\text{hd}} - \sigma_{W^-}^{\text{hd}}}{\sigma_{W^+}^{\text{fid}} + \sigma_{W^-}^{\text{fid}}}$ (A_W) correction: fiducial cross section σ^{fid}
- Compared to various models
 - Asymmetry confirmed but data don't have discriminating power between models

Yield of events: W_{z} +jets (L \cong 1.3 pb⁻¹)

■ W+jets: observed events and background: N^{observed}~2000 events for N_{iet}≥1

	Electron channel					
_	process	$N_{jet} \ge 0$	$N_{\rm jet} \ge 1$	$N_{\rm jet} \ge 2$	$N_{\rm jet} \ge 3$	$N_{\rm jet} \ge 4$
e						
	QCD	$130 {}^{+20}_{-60}$	$100 + 20 \\ -40$	45^{+7}_{-20}	$18 \frac{+3}{-8}$	-
	$W \rightarrow \tau \nu$	113 ± 11	25 ± 5	4 ± 2	0.5 ± 0.4	-
	$Z \rightarrow ee$	10 ± 8	7 ± 6	3 ± 2	1 ± 1	-
	$t\overline{t}$	17 ± 2	17 ± 2	17 ± 2	14 ± 2	-
	Observed in Data	4216	987	276	83	-

	Muon channel process	$N_{\rm jet} \ge 0$	$N_{\rm jet} \ge 1$	$N_{\rm jet} \ge 2$	$N_{\rm jet} \geq 3$	$N_{\rm jet} \ge 4$
μ	QCD	30 ± 20	20 ± 13	$4^{+10}_{-4}_{-4}$	2 ± 2	1 ± 1
	$W \rightarrow \tau \nu$ $Z \rightarrow \mu \mu$ $t \bar{t}$	133 ± 12 170 ± 14 18 ± 2	24 ± 6 30 ± 4 18 ± 2	5 ± 2 8 ± 1 18 ± 2	0.9 ± 0.5 2 ± 0.5 16 ± 2	0.4 ± 0.3 0.6 ± 0.2 11 ± 1
	Observed in Data	4911	1049	292	95	36

• Z+jets: observed events: N^{observed}~190 events for $N_{iet} \ge 1$ (within 71< M_{II} <111 GeV)

	N _{jet} ≥1	N _{jet} ≥2	N _{jet} ≥3	N _{jet} ≥4
Z/γ*(→ee)+jets	82	26	9	2
$Z/\gamma^*(\rightarrow \mu\mu)+jets$	110	31	8	2

e.g. W+jets: Yield of signal events corrected back to particle level

- Take into account detector and reconstruction efficiencies
- Use ALPGEN, restricting to same phase-space as data
- Particle-level jets constructed using jet-finder on all "long-lived" particles
- Correction factors calculated as 1D functions of jet multiplicity and p_T of leading and next-to-leading jets
 - Some data-derived correction factors e.g. for trigger efficiency
- Biases in the procedure for correcting for detector effects (compare ALPGEN and SHERPA) found to be negligible in comparison to experimental systematics
- Similar procedure for Z+jets
 - See systematic uncertainty table for unfolding systematic

W+jets: experimental systematic uncertainties

Dominant systematic uncertainties

- Luminosity determination (11%)
- Jet energy scale uncertainty

See backup slides for table of uncertainties

15

- 10% at 20 GeV to 8% at 100 GeV plus 5% for difference in calorimeter response to quark and gluon-initiated jets
- QCD template in the electron channel
- Electron identification and muon reconstruction

Dominant systematic uncertainties

- Luminosity determination (11%)
- Jet energy scale and resolution uncertainty
- QCD background in the electron channel
- Lepton reconstruction/identification

See backup slides for table of uncertainties

Comparison of results with predictions

Results shown in comparison to

- PYTHIA (LO)
- ALPGEN & SHERPA (match higher mult matrix elements to a LL parton shower)
- MCFM (provides NLO predictions for Njet≤2, LO for 3 jets)
 - Systematic uncertainties for W+jets:
 - Fragmentation: compare PYTHIA to HERWIG
 - Underlying event: compare AMBT1 tune to JIMMY tune and vary AMBT1 tune to increase underlying event activity by 10%
 - Normalisation&factorisation: vary scales by factor of 2
 - PDF: use 22 eigenvectors of CTEQ6.6, use MSTW2008
 - Systematic uncertainties for Z+jets:
 - Fragmentation& underlying event: turn off both interactions between proton remnants and the string fragmentation, use HERWIG+JIMMY and PYTHIA MC with different UE tunes (ATLAS-MC09, DW and AMBT1).
 - Normalisation&factorisation: vary scales by factor of 2
 - PDF: Hessian method

AMBT1 (ATLAS Min Bias Tune 1): tuning PYTHIA6 to LHC data at $\sqrt{s}=0.9$ %7 TeV, ATLAS-CONF-2010-031 (2010).

W + \ge N_{iet} cross sections (L \cong 1.3 pb⁻¹)

- Cross-sections given in the phase-space of the measurement
 - Kinematic requirements on lepton, jet, E_T^{miss}, m_T

$(W + \ge N_{jet})/(W + \ge N_{jet} - 1)$ cross-section ratios

W+jets cross section vs jet p_T

20

$Z/\gamma^* + \ge N_{jet}$ cross sections (L \cong 1.3 pb⁻¹)

Cross-sections given in the phase-space of the measurement

Kinematic requirements on lepton, jet, M_{II}

Z/γ^* + jets cross section vs jet p_T

Conclusions and summary

- Presented the very first results from ATLAS on W,Z and W,Z+jets production cross sections in the electron and muon decay channels!
 - Based on 0.32-1.3 pb⁻¹ (only ~3% of the available data from 2010 run!)
 - These results have set the stage for the future high statistics analyses
- Experimental uncertainties largely dominate the current results
 - Absolute measurements dominated by lumi and experimental uncertainties
 - Ratios mostly still dominated by statistics
 - Agreement with predictions but no discriminating power with models... yet!

23

BONUS SLIDES!

Monte-Carlo samples: W,Z inclusive

Need MC samples to simulate both the signal and background

- For the W and Z signal processes:
 - W $\rightarrow e/\mu\nu$, Z $\rightarrow ee/\mu\mu$ samples (MRST LO^{*}, corrected to NNLO)
- For the backgrounds the following processes were considered:
 - W $\rightarrow e/\mu/\tau v$, Z $\rightarrow ee/\mu \mu/\tau \tau$ (MRST LO^{*}, corrected to NNLO)
 - ttbar (NLO+NNLL)
 - Jet production via QCD processes (di-jet LO MC)
- $W \rightarrow I_V, Z \rightarrow II, QCD di-jet MC: generated with in-time pileup$

Physics process	Generator	σ· BR [nb]		
$W \rightarrow \ell v \ (\ell = e, \mu)$	PYTHIA [25]	10.46 ± 0.52	NNLO	[5,8]
$W^+ \rightarrow \ell^+ \nu$		6.16±0.31	NNLO	[5,8]
$W^- \rightarrow \ell^- \overline{V}$		4.30 ± 0.21	NNLO	[5,8]
$Z/\gamma^* \to \ell \ell (m_{\ell \ell} > 60 \text{ GeV})$	PYTHIA	0.99 ± 0.05	NNLO	[5,8]
$W \rightarrow \tau v$	PYTHIA	10.46 ± 0.52	NNLO	[5,8]
$W \rightarrow \tau \nu \rightarrow \ell \nu \nu \nu$	PYTHIA	3.68 ± 0.18	NNLO	[5,8]
$Z/\gamma^* \rightarrow \tau \tau (m_{\ell\ell} > 60 \text{ GeV})$	PYTHIA	0.99 ± 0.05	NNLO	[5,8]
tī	MC@NLO [26,27],	0.16 ± 0.01	NLO+NNLL	[28-30]
	POWHEG [31]			
Dijet (<i>e</i> channel, $\hat{p}_{T} > 15 \text{ GeV}$)	PYTHIA	1.2×10^{6}	LO	[25]
Dijet (μ channel, $\hat{p}_{T} > 8 \text{ GeV}$)	PYTHIA	10.6×10^{6}	LO	[25]
$b\overline{b}$ (μ channel, $\hat{p}_{T} > 18 \text{ GeV}, p_{T}(\mu) > 15 \text{ GeV}$)	PYTHIA	73.9	LO	[25]
$c\overline{c}$ (μ channel, $\hat{p}_{T} > 18 \text{ GeV}, p_{T}(\mu) > 15 \text{ GeV}$)	PYTHIA	28.4	LO	[25]

Monte-Carlo samples: W,Z + jets

Physics process	Generator	0	$\tau \cdot BR (nb)$	
$W \to \ell \nu$ inclusive $(\ell = e, \mu, \tau)$	PYTHIA 6.4.21 [21]	10.46	NNLO	[14]
$W^+ \to \ell^+ \nu$		6.16	NNLO	[14]
$W^- \rightarrow \ell^- \overline{\nu}$		4.30	NNLO	[14]
$W \to \ell \nu + \text{jets} \ (\ell = e, \mu, \tau)$	PYTHIA 6.4.21 [21]			
$W \to \ell \nu + \text{jets} \ (\ell = e, \mu, \tau, \ 0 \le N_{parton} \le 5)$	ALPGEN 2.13 [22]			
$W \to \ell \nu + \text{jets} \ (\ell = e, \mu, \tau, \ 0 \le N_{parton} \le 4)$	SHERPA 1.1.3 [23]			
$Z \to \ell \ell + \text{jets} \ (m_{\ell \ell} > 40 \text{ GeV}, \ 0 \le N_{parton} \le 5)$	ALPGEN 2.13 [22]	1.07	NNLO	[14]
$t\overline{t}$	POWHEG-HVQ			
	v1.01 patch 4 [24]	0.16	NLO+NNLL	[25]
Dijet (e channel, $\hat{p}_{\rm T} > 15 {\rm ~GeV}$)	PYTHIA 6.4.21 [21]	1.2×10^{6}	$_{\rm LO}$	[21]
Dijet (μ channel, $\hat{p}_{\rm T} > 8$ GeV, $p_{\rm T}^{\mu} > 8$ GeV)	PYTHIA 6.4.21 [21]	10.6×10^6	LO	[21]

Physics process	Generator	$\sigma \times Br(nb)$
$Z/\gamma^*(\rightarrow ll)$ +jets, $l = e, \mu, \tau$ ($m_{ll} > 40$ GeV, $0 \le N_{parton} \le 5$)	ALPGEN	1.07 (NNLO)
$Z/\gamma^*(\rightarrow ll)$ +jets, $l = e, \mu \ (m_{ll} > 60 \text{ GeV}, 0 \le N_{parton} \le 4)$	SHERPA	0.99 (NNLO)
$Z/\gamma^*(\rightarrow ll)$ +jets, $l = e, \mu \ (m_{ll} > 40 \text{ GeV}, \ \hat{p}_t > 10 \text{ GeV})$	PYTHIA	0.47 (LO)
$Z/\gamma^*(\rightarrow ll)$ +jets, $l = e, \mu \ (m_{ll} > 40 \text{ GeV}, \ \hat{p}_t > 10 \text{ GeV})$	HERWIG+JIMMY	0.37 (LO)
$W(\rightarrow l\nu_l)$ +jets, $l = e, \mu$	ALPGEN	10.46 (NNLO)
$t\overline{t}$ (lepton + X final state)	MC@NLO	0.16 (NLO)
$WW + WZ + ZZ$ (2 leptons + X final state, $0 \le N_{parton} \le 3$)	ALPGEN	0.007 (NLO)
Dijets (inclusive jets, electron filter $E_T > 17$ GeV)	PYTHIA	97700 (LO)
Dijets $(bb + c\overline{c}, \text{muon filter } p_{\text{T}} > 15 \text{ GeV})$	PYTHIA	102.3 (LO)

26

W+jets: systematic uncertainties for $N_{jet} \ge 1$

	e channel				
		Cross Section			
Effect	Range	Uncertainty (%)			
Jet energy scale and $E_{\rm T}^{\rm miss}$	$\pm 10\%$ (dependent on jet η and $p_{\rm T}$) $\oplus 5\%$	+11, -9			
Jet energy resolution	14% on each jet	± 1.0			
Electron trigger	$\pm 0.5\%$	∓ 0.7			
Electron identification	$\pm 5.2\%$	∓ 5.5			
Electron energy scale	$\pm 3\%$	+3.9, -4.7			
Pile–up removal cut	$4-7\%$ in lowest jet $p_{\rm T}$ bin	± 1.9			
Residual pile-up effects	from simulation	± 2.2			
QCD background shape	from template variation	-1.5, +5.2			
Luminosity	$\pm 11\%$	-10, +13			

	μ channel			
		Cross Section		
Effect	Range	Uncertainty (%)		
Jet energy scale and $E_{\rm T}^{\rm miss}$	$\pm 10\%$ (dependent on jet η and $p_{\rm T}$) $\oplus 5\%$	+11, -9		
Jet energy resolution	14% on each jet	± 1.8		
Muon trigger	$\pm 2.5\%$ in barrel, $\pm 2.0\%$ in endcap	∓ 1.6		
Muon reconstruction	$\pm 5.6\%$	-5.4, +5.9		
Muon momentum scale	$\pm 1\%$	+2, -0.9		
Muon momentum resolution	$\pm 5\%$ in barrel, $\pm 9\%$ in endcap	± 1.4		
Pile–up removal cut	$4-7\%$ in lowest jet $p_{\rm T}$ bin	± 1.7		
Residual pile-up effects	from simulation	± 1.4		
Luminosity	$\pm 11\%$	-11, +13		

Z+jets: systematic uncertainties for $N_{jet} \ge 1$

<i>e</i> channel			
Source	range	uncertainty on cross section (%)	
Jet energy scale	7% to 8%, depending on $p_{ m T}^{ m jet}$ and $\eta^{ m jet}\oplus$ 5%	10% to 20%	
Jet energy resolution	14% per jet	8% to 2%	
Pile-up removal	4% in first $p_{\rm T}^{\rm jet}$ bin	4% at $p_{ m T}^{ m jet}$ $<$ 30 GeV	
QCD background	100% uncertainty	4% to 6%	
$t\overline{t}, Z/W$ +jets, dibosons	6%, 5%, 5% on normalization	1%	
Lepton reconstruction	4.9% independent on N_{jet} and p_T^{jet}	10%	
Unfolding	using SHERPA instead of ALPGEN	2% to 6%	
	μ channel		
Source	range	uncertainty on cross section (%)	
Jet energy scale	7% to 8%, depending on $p_{ m T}^{ m jet}$ and $\eta^{ m jet}\oplus$ 5%	10% to 20%	
Jet energy resolution	14% per jet	8% to 2%	
Pile-up removal	4% in first $p_{\rm T}^{\rm jet}$ bin	4% at $p_{ m T}^{ m jet} <$ 30 GeV	
QCD background	100% uncertainty	< 1%	
$t\overline{t}, Z/W$ +jets, dibosons	6%, 5%, 5% on normalization	< 1%	
Lepton reconstruction	7% independent on N _{jet} and p _T ^{jet}	12%	
Unfolding	using SHERPA instead of ALPGEN	2% to 6%	

Inclusive cross-section results + ratios

	$\sigma_{W^{(\pm)}}^{\text{tot}} \cdot BR(W \to ev) \text{ [nb]}$	$\sigma_{W^{(\pm)}}^{\text{tot}} \cdot \text{BR}(W \to \mu \nu) \text{ [nb]}$
W^+	$6.27 \pm 0.26(\text{stat}) \pm 0.48(\text{syst}) \pm 0.69(\text{lumi})$	$5.71 \pm 0.23(\text{stat}) \pm 0.30(\text{syst}) \pm 0.63(\text{lumi})$
W^-	$4.23 \pm 0.22(\text{stat}) \pm 0.33(\text{syst}) \pm 0.47(\text{lumi})$	$3.86 \pm 0.20(\text{stat}) \pm 0.20(\text{syst}) \pm 0.42(\text{lumi})$
W	$10.51 \pm 0.34(\text{stat}) \pm 0.81(\text{syst}) \pm 1.16(\text{lumi})$	$9.58 \pm 0.30(\text{stat}) \pm 0.50(\text{syst}) \pm 1.05(\text{lumi})$
	$\sigma_{Z/\gamma^*}^{\text{tot}} \cdot \text{BR}(Z/\gamma^* \rightarrow ee)$ [nb], 66 < m_{ee} < 116 GeV	$\sigma_{Z/\gamma^*}^{\text{tot}} \cdot \text{BR}(Z/\gamma^* \to \mu\mu) \text{ [nb]},$ $66 < m_{\mu\mu} < 116 \text{ GeV}$
Z/γ^*	$0.75 \pm 0.09(\text{stat}) \pm 0.08(\text{syst}) \pm 0.08(\text{lumi})$	$0.87 \pm 0.08(\text{stat}) \pm 0.06(\text{syst}) \pm 0.10(\text{lumi})$

	$R^e_{W^{(\pm)}/Z}$	$R^{\mu}_{W^{(\pm)}/Z}$
W^+	$8.4 \pm 1.1 \text{ (stat)} \pm 0.6 \text{ (syst)}$	$6.5 \pm 0.7 \text{ (stat)} \pm 0.3 \text{ (syst)}$
W^-	$5.7 \pm 0.7 \text{ (stat)} \pm 0.4 \text{ (syst)}$	4.4 ± 0.5 (stat) ± 0.2 (syst)
W	$14.0 \pm 1.8 \text{ (stat)} \pm 0.9 \text{ (syst)}$	$11.0 \pm 1.1 \text{ (stat)} \pm 0.5 \text{ (syst)}$

Iet				MCFM			MCFM	
multi	multiplicity $W \to e\nu$ (nb)			$W \rightarrow e\nu \text{ (nb)}$	$W \rightarrow \mu \nu$ (nb)	$W \rightarrow \mu \nu \text{ (nb)}$		
manipheng				, (112)				
\geq	$\geq 0 \qquad 4.53 \pm 0.07 {}^{+0.35}_{-0.30} {}^{+0.58}_{-0.47}$		$5.08^{+0.11}_{-0.30}$	$4.58 \pm 0.07 \substack{+0.38 \\ -0.32 } \substack{+0.61 \\ -0.48}$		$5.27^{+0.11}_{-0.32}$		
\geq	1	0.84	$4 \pm 0.03^{+0.13}_{-0.10} {}^{+0.11}_{-0.09}$	$0.81\substack{+0.02\\-0.04}$	$0.84 \pm 0.03 \substack{+0.11 \\ -0.09}$	+0.11 -0.09	$0.84^{+0.02}_{-0.04}$	
≥ 2 0.21		0.21	$1 \pm 0.01 \stackrel{+0.04}{_{-0.03}} \stackrel{+0.03}{_{-0.02}}$	$0.21_{-0.02}^{+0.01}$	$0.23 \pm 0.02 \substack{+0.04 \\ -0.03 } \substack{+0.03 \\ -0.02}$		$0.21_{-0.02}^{+0.01}$	
≥ 3 ($0.047 \pm 0.007^{+0.014}_{-0.011} {}^{+0.008}_{-0.011}$		0.05 ± 0.02	$0.064 \pm 0.008 \substack{+0.016 \\ -0.014 } \substack{+0.010 \\ -0.008}$		0.05 ± 0.02	
≥ 4			-	-	$0.019 \pm 0.005 \pm 0.006 \substack{+0.004 \\ -0.003}$		-	
	Jet			MCFM	MCI		M	
multiplic		olicity	$W \rightarrow e\nu$	$W \to e\nu$	$W \rightarrow \mu \nu$	$W \rightarrow$	$\mu\nu$	
$\geq 1/\geq 0$		≥ 0	$0.185 \pm 0.007^{+0.025}_{-0.019}$	$0.159^{+0.006}_{-0.005}$	$0.183 \pm 0.007^{+0.023}_{-0.020}$	$0.160^{+0.006}_{-0.005}$		
$\geq 2/\geq 1$		≥ 1	$0.250 \pm 0.019^{+0.019}_{-0.010}$	$0.255^{+0.017}_{-0.022}$	$0.274 \pm 0.020^{+0.018}_{-0.011}$	0.255^{+}_{-}	$0.017 \\ 0.021$	
$\geq 3/\geq 2$		≥ 2	$0.224 \pm 0.037 \pm 0.02$	$2 0.241^{+0.108}_{-0.061}$	$0.278 \pm 0.041^{+0.024}_{-0.020}$	0.242^{+}_{-}	$0.104 \\ 0.061$	
$\geq 4/\geq 3$		≥ 3	-	-	$0.297 \pm 0.088^{+0.037}_{-0.026}$	-		
							30	