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nPDFs: Testing the factorization
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@ Nuclear modifications in experimental cross-sections:
gbound nucleon = gfree nucleon

@ Various analyses indicate that such effects can be factorized to the
universal nuclear PDFs: EPS09, HKNO7, nDS, nCTEQ...

TAB—h+X = Z fz‘A(ﬂjla Qz) ® ff(ﬂj% Qz) ® gtti—htX

Nuclear PDFs, obeying Standard pQCD
DGLAP equations cross-sections




@)

@)

@)

@)

1998:

2007 :

2008 :

2009 :

12 years of EPS-studies

EKS98 (Eskola, Kolhinen, Ruuskanen, Salgado)
The pioneering work — demonstrated that the
factorization works for

e+A 2>e+ X (DIS)

p+A = Ut+U-+ X (Drell-Yan)
The “fit” was done by eye.

EKPS (Eskola, Kolhinen, Paukkunen, Salgado)
Reanalysis of EKS98 — automated minimization (MINUIT)
and a first try to estimate the uncertainties.

EPS08 (Eskola, Paukkunen, Salgado)
Motivated by small-pT suppression of BRAHMS

pion data, the purpose was to study how strong
gluon suppression at small-x would be possible.

EPS09 (Eskola, Paukkunen, Salgado)
The analysis extended to NLO and an error
analysis “a la CTEQ” was carried out.
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Experimental constraints in EPS09

@ Three types of data:

Deeply inelastic scattering: e+A —»e +X
Drell-Yan dilepton production: p+A =>4t + 4~ + X
Inclusive pion production: d+Au-m+ X

o Mutual consistency between the

. ] IIIII|T| I IIIII|T| | IIIIIIII I IIIIII|'| T T 1T

data sets is necessary. For example: > i i
8 100 = ® Drell-Yan
. o~ - = SLACDIS
- HERMES DIS data dISplay d @ B B NMC & EMC DIS
Q2-dependence not in agreement with -
other data. Not used. 10

- The forward rapidity pions from = Foc 8 . o) L

BRAHMS display tension with other 1.0 £ 1. E
data. Not used. - = BRAHMS 722 -
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- Combatibility of the neutrino-nucleus 0.1 F o " IPHENIX 00
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The Framework of EPS09

® The bound proton PDFs f(x,Q) in a nucleus A are defined as
e, Q") = Rz QO f (@, Q)

@ MS, Zero-mass variable flavour number scheme

Our studies utilizing the SACOT-prescription (with e.g. CTEQ6.6)
for the heavy quarks do not display large deviations from the
zero-mass results in the regions constrained by the data.

One may safely use EPS09 also with newer s [ » » -
sets of CTEQ6.6, CT10, efc... o tshadowing - tion
e The nuclear modifications are » - PN
parametrized at initial scale Q,=1.3 GeV _, |
g i
Ry (z, Q%)  for all valence quarks 0‘390 E Tdowing T
R§(x,Q3) for all sea quarks 0 [ i L
Ré(ij%) forgluons ; ] ] IIIIII|2 ] ] IIIIIII1 ] ] IIIIII
107 10 10 I

@ The flavor-separation not well constrained by the utilized data!



The Framework of EPS09

@ The optimal parameters are found by minimizing x2

* _EWNZ(DGT)

IEN

Some data sets are assigned an extra weight to improve the
convergence of the fit. » Somewhat too optimistic nPDF errors?

@ We apply the Hessian error analysis approximating the %2 close to the
minumum by

1 ({ai}) = x5+ Y 8aiHj6aj = x5+ Y 2
i l

@ The uncertainty sets of nPDFs are constructed in z-space by requiring
each data set to remain roughly within its ”90% confidence limits™.

@ Uncertainty in any nPDF-dependend quantity X can be estimated
by (S, is the central set and S;* the error sets)

AX T\ = \/;max\min X (SH) =X (S0),X(S7) = X(S0),0]
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Application of EPS09 to the
heavy boson production at
the LHC.



Framework: Z Production

d*c (\/s,H, + Hy — (T + (- + X)
dM2dy

@ We look at the leptonic channel:

Ygr = rapidity of the lepton pair
M = M = invariant mass of the lepton pair

@ Experimentally well measurable — already seen in PbPb at the LHC!

@ In the leading order the cross-section reads (we do of course NLO)

d?o A

dM2dy g ~ 0q ﬂ?; Cﬁ [q(l](:h:.@?)q(z](l?z;@?) —I—ﬁ(l)(:th?)q(E)(:rg,Q?)}
| L p

T12 = (ﬂj/\/g)gyﬁv_yﬁ




Framework: Z Production

@ Experime

@ In the lea
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Framework: W Production
d20<\/§,H1+H2—>{ Eerz +X>

(— +7v

@ We look at the leptonic channel:

dM?dyg
2oV Tz M-
dM 2d’y B o 36sM 2 :‘31114 I?w' (ﬂf 2 — ?"’fﬁ )2 + 11‘?@ F%‘r

X Z“/zj| [{1) Tlan)qj ($27Qf)+qg ($13Qf) {)(IZaQ})]

T1,2 = (ﬂ’ir/\/g)eyﬁa_yﬁ

@ The missing neutrino momentum cannot be fully reconstructed, so this
is not directly observable. However, one can show that in leading order

3 _hiho—IT+X : r+
d3o™ 2oV

E

x
3, M A2
d°p pr=—9- dM=dyr | y -,

—_— The results | present rogghly apply also to
charged lepton production.



Z Production in p+Pb Collisions

Z-Spectrum, pPb at /s = 8.8TeV, M=M,
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Z Production in p+Pb Collisions

Look at the ratio
dQJZ!yR dQO'Z:'_yR

dM2dyj, / dM2dyp,

Sizable effect from nuclear
Modifications to the PDFs! o

The free proton uncertainties
cancel to large extent!

No normalization problems
(e.g. luminosity)
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Relative
uncertainty
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W Production in p+Pb Collisions

W’ Spectrum, pPb at 5

8.8TeV, M=M,,
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W Production in p+Pb Collisions

@ The nuclear effect in rapidity asymmetry ratio is much smaller than in Z

production.
dQO-W:t,yR dQO.W:I:,—yR

dﬁ’jgdyR / dﬂfzdyR
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W Production in p+Pb Collisions

i . dz H'r+ayR dz H’r+a_yR d2 W™ yr d2 W=, —yr
@ Look at the combination J - — J - J - — a -
dM-=dygr dM-=*dyg dM=*dyg dM-=dygr
Another Asymmetry, pPb at /s = 8.8TeV
1.0 — 1 ' 1 - 1 T ' T " T T T T 1

Large nuclear effect with a
® large uncertainty already at
the midrapidity.

Due to the “flavor-blind”
parametrization of the nuclear
modifications in EPS09, these
uncertainties are, however,
only lower limits.
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Z Production in Pb+Pb Collisions

Relative
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Z Production in Pb+Pb Collisions

Z Production, M=M, Z Production, M=M,
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Normalizing by the rapidity-integrated cross-section reduces especially
the free proton uncertainties.



Ratio

Z Production in Pb+Pb Collisions

Z Production, M=M;
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Normalizing by a reference cross-section from p+p collisions brings up
® the nuclear effects. The free proton uncertainties estimated from a

interpolation 7 Tev —» 2.7 & 5.5 TeV.



W Production in Pb+Pb Collisions
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Conclusions

The p+Pb collisions at the LHC would be extremely useful to study the
nuclear effects in PDFs. Large effects expected in quantities:

2 ZvyR 2 Z:_yR
d 0Py d O P

dMQdyR dMQdyR

dMQdyR dMQdyR

dMQdyR dMQdyR

2o un d20w+,yR] [d2aw,yR 2oV R

Nuclear effects in Pb+Pb are more difficult to extract. A baseline from p+p
@® collisions would be needed to better see the nuclear effects in PDFs. The Z
production probably more useful than the W production.
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