EPS nPDFs & heavy boson production at the LHC

Hannu Paukkunen

In collaboration with Carlos A. Salgado

University of Santiago de Compostela

Winter Workshop on Recent QCD Advances at the LHC, Les Houches, Feb.15, 2011

nPDFs: Testing the factorization

- Nuclear modifications in experimental cross-sections:

 σ^{bound} nucleon ≠ σ^{free} nucleon
- Various analyses indicate that such effects can be factorized to the universal nuclear PDFs: EPS09, HKN07, nDS, nCTEQ...

$$\sigma_{AB \to h+X} = \sum_{ij} f_i^A(x_1, Q^2) \otimes f_j^B(x_2, Q^2) \otimes \sigma^{i+j \to h+X}$$

Nuclear PDFs, obeying
DGLAP equations Standard pQCD
cross-sections

12 years of EPS-studies

•	1998: EKS98 (Eskola, Kolhinen, Ruuskanen, Salgado) <i>The pioneering work – demonstrated that the</i> <i>factorization works for</i> $e+A \rightarrow e + X$ (DIS) $p+A \rightarrow \mu^+ + \mu^- + X$ (Drell-Yan) <i>The "fit" was done by eye.</i>	LO
•	2007 : EKPS (Eskola, Kolhinen, Paukkunen, Salgado) <i>Reanalysis of EKS98 – automated minimization (MINUIT)</i> <i>and a first try to estimate the uncertainties.</i>	LO
•	2008 : EPS08 (Eskola, Paukkunen, Salgado) <i>Motivated by small-pT suppression of BRAHMS</i> <i>pion data, the purpose was to study how strong</i> <i>gluon suppression at small-x would be possible.</i>	LO
0	2009 : EPS09 (Eskola, Paukkunen, Salgado) <i>The analysis extended to NLO and an error</i> <i>analysis "a la CTEQ" was carried out.</i>	LO & NLO

Experimental constraints in EPS09

- Three types of data:
 - Deeply inelastic scattering: Drell-Yan dilepton production: Inclusive pion production:
- Mutual consistency between the data sets is necessary. For example:
 - HERMES DIS data display a Q²-dependence not in agreement with other data. Not used.
 - The forward rapidity pions from BRAHMS display tension with other data. Not used.
 - Combatibility of the neutrino-nucleus DIS data with the rest is still under discussion. See e.g. JHEP 1007 (2010) 032, and aXiv:1012.0286.

$$e + A \rightarrow e + X$$

 $p + A \rightarrow \mu^+ + \mu^- + X$
 $d + Au \rightarrow \pi + X$

The Framework of EPS09

The bound proton PDFs $f_i(x,Q)$ in a nucleus A are defined as $f_i^A(x,Q^2) \equiv R_i^A(x,Q^2) f_i^{CTEQ6.1M}(x,Q^2)$

MS, Zero-mass variable flavour number scheme

Our studies utilizing the SACOT-prescription (with e.g. CTEQ6.6) for the heavy quarks do <u>not</u> display large deviations from the zero-mass results in the regions constrained by the data.

The flavor-separation not well constrained by the utilized data!

The Framework of EPS09

• The optimal parameters are found by minimizing χ^2

$$\chi^{2} \equiv \sum_{N} w_{N} \sum_{i \in N} \left(\frac{D_{i} - T_{i}}{\sigma_{i}} \right)^{2}$$
Some data sets are

Some data sets are assigned an extra weight to improve the convergence of the fit. → Somewhat too optimistic nPDF errors?

• We apply the Hessian error analysis approximating the χ^2 close to the minumum by

$$\chi^2(\{a_i\}) pprox \chi_0^2 + \sum_{ij} \delta a_i H_{ij} \delta a_j = \chi_0^2 + \sum_i z_i^2$$

- The uncertainty sets of nPDFs are constructed in z-space by requiring each data set to remain roughly within its "90% confidence limits".
- Uncertainty in any nPDF-dependend quantity X can be estimated by (S₀ is the central set and S_i[±] the error sets)

$$\Delta X^{+\setminus -} = \sqrt{\sum_i \max \setminus \min \left[X(S_i^+) - X(S_0), X(S_i^-) - X(S_0), 0
ight]^2}$$

Application of EPS09 to the heavy boson production at the LHC.

arXiv:1010.5392 [hep-ph] (submitted to JHEP)

Framework: Z Production

• We look at the leptonic channel:

$$d^2\sigma \left(\sqrt{s}, \mathrm{H}_1 + \mathrm{H}_2 \to \ell^+ + \ell^- + \mathrm{X}\right)$$

 $dM^2 dy_R$

 y_R = rapidity of the lepton pair $M = M_Z$ = invariant mass of the lepton pair

- Experimentally well measurable already seen in PbPb at the LHC!
- In the leading order the cross-section reads (we do of course NLO)

$$\frac{d^2\sigma}{dM^2dy_R} = \frac{4\pi\alpha_{\rm em}^2}{9sM^2} \sum_q c_q^2 \left[q^{(1)}(x_1, Q_f^2)\overline{q}^{(2)}(x_2, Q_f^2) + \overline{q}^{(1)}(x_1, Q_f^2)q^{(2)}(x_2, Q_f^2) \right]$$
$$x_{1,2} \equiv \left(M/\sqrt{s} \right) e^{y_R, -y_R}$$

Framework: Z Production

Framework: W Production

• We look at the leptonic channel: $\frac{d^2\sigma\left(\sqrt{s}, H_1 + H_2 \rightarrow \left\{\begin{array}{c}\ell^+ + \nu\\\ell^- + \overline{\nu}\end{array} + X\right)}{\ell^{-} + \overline{\nu}}\right)}{\ell^{-} + 2}$

$$dM^2dy_R$$

$$\frac{d^{2}\sigma^{W^{\pm}}}{dM^{2}dy_{R}} = \frac{\pi\alpha_{\rm em}^{2}}{36sM^{2}\sin^{4}\theta_{\rm W}} \frac{M^{4}}{(M^{2}-M_{W}^{2})^{2}+M_{W}^{2}\Gamma_{W}^{2}} \times \sum |V_{ij}|^{2} \left[q_{i}^{(1)}(x_{1},Q_{f}^{2})\overline{q}_{j}^{(2)}(x_{2},Q_{f}^{2})+\overline{q}_{j}^{(1)}(x_{1},Q_{f}^{2})q_{i}^{(2)}(x_{2},Q_{f}^{2})\right]$$

$$x_{1,2} \equiv (M/\sqrt{s})e^{y_R, -y_R}$$

The missing neutrino momentum cannot be fully reconstructed, so this is not directly observable. However, one can show that in leading order

$$E\frac{d^3\sigma^{h_1h_2\to\ell^{\pm}+X}}{d^3p}\Big|_{p_T=\frac{M_W}{2}} \propto \frac{d^2\sigma^{W^{\pm}}}{dM^2dy_R}\Big|_{M=M_W}$$

The results I present roughly apply also to charged lepton production.

Z Production in p+Pb Collisions

Z Production in p+Pb Collisions

Look at the ratio

$$\frac{d^2\sigma^{Z,y_R}}{dM^2dy_R} / \frac{d^2\sigma^{Z,-y_R}}{dM^2dy_R}$$

- Sizable effect from nuclear Modifications to the PDFs!
- The free proton uncertainties cancel to large extent!
- No normalization problems (e.g. luminosity)

W Production in p+Pb Collisions

W Production in p+Pb Collisions

The nuclear effect in rapidity asymmetry ratio is much smaller than in Z production.

$$\frac{d^2\sigma^{W^{\pm},y_R}}{dM^2dy_R} / \frac{d^2\sigma^{W^{\pm},-y_R}}{dM^2dy_R}$$

W Production in p+Pb Collisions

Large nuclear effect with a Iarge uncertainty already at the midrapidity.

Due to the "flavor-blind" parametrization of the nuclear \bigcirc modifications in EPS09, these uncertainties are, however, only lower limits.

Z Production in Pb+Pb Collisions

Unlike in p+Pb, in Pb+Pb the spectra are symmetric in rapidity.

Z Production in Pb+Pb Collisions

 Normalizing by the rapidity-integrated cross-section reduces especially the free proton uncertainties.

Z Production in Pb+Pb Collisions

Normalizing by a reference cross-section from p+p collisions brings up
 the nuclear effects. The free proton uncertainties estimated from a interpolation 7 Tev → 2.7 & 5.5 TeV.

W Production in Pb+Pb Collisions

Conclusions

The p+Pb collisions at the LHC would be <u>extremely</u> useful to study the nuclear effects in PDFs. Large effects expected in quantities:

 $\frac{d^2 \sigma_{\mathrm{pPb}}^{Z,y_R}}{dM^2 dy_R} / \frac{d^2 \sigma_{\mathrm{pPb}}^{Z,-y_R}}{dM^2 dy_R}$ $\left[\frac{d^2 \sigma^{W^+,y_R}}{dM^2 dy_R} - \frac{d^2 \sigma^{W^+,-y_R}}{dM^2 dy_R}\right] / \left[\frac{d^2 \sigma^{W^-,y_R}}{dM^2 dy_R} - \frac{d^2 \sigma^{W^-,-y_R}}{dM^2 dy_R}\right]$

Nuclear effects in Pb+Pb are more difficult to extract. A baseline from p+p
 collisions would be needed to better see the nuclear effects in PDFs. The Z production probably more useful than the W production.