Jet physics in p-p collisions at ATLAS

Pierre-Antoine Delsart

On behalf of the ATLAS collaboration

Winter Workshop on Recent QCD Advances at the LHC

Les Houches, February 13th - 18th, 2011

Laboratoire de Physique Subatomique et Corpusculaire CNRS/IN2P3

Report on high energy jet physics analysis in ATLAS

- Common ingredients
 - Detector
 - Data sample, event selection, Monte-Carlo
 - Jets reconstruction, systematics

Physics results

- Inclusive, di-jets, multi-jets x-sections
- Jet shapes
- Azimuthal decorrelation
- Conclusion, outlook

The ATLAS Detector

Data samples and event selection

Data samples

- **>** Early runs of LHC with $\sqrt{s}=7$ TeV
- Integrated luminosity between 17nb⁻¹ and 3pb⁻¹
 - ($\Delta\phi$ analysis with full 2010 data : 36pb⁻¹)
- Trigger events with
 - > MBTS

16/02/11

Data samples and event selection

Data samples

- Early runs of LHC
- Integrated luminosity between 17nb⁻¹ and 3pb⁻¹
 - ($\Delta \phi$ analysis with full 2010 data : 36pb⁻¹)
- Triggers
 - > MBTS
 - > L1 calorimeter ('Towers' with p_{T} >5, 15, 30, 55 GeV)
 - Used in their ~100% efficiency domain
- Analysis cuts (details depend on analysis)
 - 1 vertex required
 - > Jets Pt ≥ ~50GeV

Monte-Carlo Samples

Pythia 6.241

- PDF : MRST2007LO
- Default parameters tune : 'Atlas MC09', based on Tevatron results
- Other tunes : Perugia2010, DW (PDF : CTEQ5L)

Herwig6 + Jimmy / Herwig++

- Often used as x-check samples/ systematics estimations
- Sherpa

Alpgen

- For multi-jets events
- Interfaced with Herwig & Jimmy. PDF : CTEQ61L

NLO calculations

- NLOJET++ 4.1.2 (with CTEQ6.6 NLO, or MSTW2008)
- JETRAD used for cross-checks

16/02/11

Jet reconstruction in Atlas

Input Calorimeter objects are 3D Topological Clusters

- 4/2/0 algorithm based on E/sigma ratios
- Intrinsic noise suppression
- Use default calorimeter calibration : EM scale

Jet reconstruction in Atlas

Input Calorimeter objects are 3D Topological Clusters

- 4/2/0 algorithm based on E/sigma ratios
- Intrinsic noise suppression
- Use default calorimeter calibration : EM scale

Jets build from clusters with AntiKt algorithm

- R=0.4 or 0.6 (all plots in this talk)
- Calibration : scale factor based on Monte-Carlo Numerical Inversion

Systematic uncertainties

Dominant uncertainty in most analysis : Jet Energy Scale (JES)

Systematic uncertainties

Unfolding

- Account for efficiency & resolution of trigger and detector
- Bin-by-bin correction from simulated/generated ratios
- Small or negligible compared to absolute JES
- Pile-up
 - > Small (<2%) or negligible with early runs used here
 - Not true with full 2010 data, c.f. $\Delta\phi\,$ analysis
- Luminosity
 - Measured with ATLAS dedicated devices +LHC VdM scans
 - >~11%

Physics Results

Single/Di-jet cross-section

Measured with L=17nb⁻¹

Published in EPJC s10052-010-1512-2

- Jet selection : $p_1 > 60 \text{GeV}$, |y| < 2.8
 - Require 2nd jet with pT>30 GeV in di-jet analysis
- Main systematics
 - > JES
 - Luminosity
- Good agreement Data/MC

Highest central di-jet inv. mass

16/02/11

Single jet double diff cross-section

Compared to event generators

16/02/11

15

Single jet double diff cross-section

Compared to NLO pQCD calculations

Di-jet double diff cross-section

Multi-jet cross-sections

- Measured with L=17nb⁻¹
- Jet selection :

> p_T > 30 GeV, |y|<2.8, at least 1jet p_T >60GeV

- Results given as function of $H_T = \sum p_T$
- Monte-Carlo

ALPGEN, interfaced to Herwig/Jimmy (hadronization/UE)

ATLAS-CONF-2010-084

iets

- Main systematics
 - JES and 'close-by jets' effects
 - Luminosity
- Good agreement Data/MC

Multi-jet cross-sections

Multi-jet cross-sections

Jet shapes

arXiv:1101.0070 [hep-ex] accepted by PRD

 \blacksquare Measure radial $p_{\scriptscriptstyle T}$ distribution inside jets :

$$\begin{split} \rho(r) &= \frac{1}{\Delta r N_{\text{jet}}} \sum_{\text{jets}} \frac{p_{\text{T}} \left(r \pm \Delta r/2\right)}{p_{\text{T}} \left(0, R\right)} \\ \Psi(r) &= \frac{1}{N_{\text{jet}}} \sum_{\text{jets}} \frac{p_{\text{T}} \left(0, r\right)}{p_{\text{T}} \left(0, R\right)} & \leftarrow \text{Integrated shape} \end{split}$$

- Select jets with p₇>30GeV in selected events
- Main systematics :
 - Cluster Energy Scale (separated from JES) : 5 to 15%
 - > Unfolding : 2 to 10%
 - Overall uncertainty on rho(r) : from 2 to 27% depending on p_T and r bins

Jet shapes

- Check 'Narrowness' of jets
- Fraction of p_{T} outside 0.3R

1-Ψ(r=0.3)

 Also compare different Pythia tunes

Jet shapes

Separate MC predictions for quark/gluon jets

Azimuthal decorrelation

[hep-ex]1102.2696 (submitted to PRL)

- Measured with all 2010 data, L=36pb⁻¹
- Measure $\Delta \phi$ between 2 leading jets
- $\Delta \phi$ distributions depends on jet multiplicity
- Good handle on pQCD predictions
- Jets selections
 - > Leading jets : $p_{T1} > 110GeV$, $|y_1|, |y_2| < 0.8$
 - > Others : p_T>100GeV, |y|<2.8</p>
- Main systematics (depending on $\Delta \phi$ bin)
 - JES : 2 to 17%
 - Unfolding : 1 to 19%
 - Pile-up : 0.8% max

Azimuthal decorrelation

Azimuthal decorrelation

Conclusions

First high pT jets analysis with early data

- Limited statistics
 - Already exceeding some Tevatron results (di-jet xsection up to m=1.8TeV)
- Overall good agreement between Data and theory
- Helps estimations of SM backgrounds to new physics
- Understanding of detector is improving quickly

Expect significant updates of analysis soon
Full 2010 data (~35pb⁻¹, scale stats by 100-1000)
Better control of systematics (JES)
Refined analysis

Backup slides

16/02/11

16/02/11

